首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   26篇
  349篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   9篇
  2015年   12篇
  2014年   19篇
  2013年   19篇
  2012年   20篇
  2011年   27篇
  2010年   19篇
  2009年   11篇
  2008年   19篇
  2007年   21篇
  2006年   16篇
  2005年   22篇
  2004年   22篇
  2003年   16篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   14篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
11.
12.
Phytochemicals such as soy isoflavone genistein have been reported to possess therapeutic effects for obesity, diabetes, and cardiovascular diseases. In the present study, the molecular basis of selective phytochemicals with emphasis on their ability to control intracellular signaling cascades of AMP-activated kinase (AMPK) responsible for the inhibition of adipogenesis was investigated. Recently, the evolutionarily conserved serine/threonine kinase, AMPK, emerges as a possible target molecule of anti-obesity. Hypothalamic AMPK was found to integrate nutritional and hormonal signals modulating feeding behavior and energy expenditure. We have investigated the effects of genistein, EGCG, and capsaicin on adipocyte differentiation in relation to AMPK activation in 3T3-L1 cells. Genistein (20-200muM) significantly inhibited the process of adipocyte differentiation and led to apoptosis of mature adipocytes. Genistein, EGCG, and capsaicin stimulated the intracellular ROS release, which activated AMPK rapidly. We suggest that AMPK is a novel and critical component of both inhibition of adipocyte differentiation and apoptosis of mature adipocytes by genistein or EGCG or capsaicin further implying AMPK as a prime target of obesity control.  相似文献   
13.
The endoplasmic reticulum (ER) plays essential roles indispensable for cellular activity and survival, including functions such as protein synthesis, secretory and membrane protein folding, and Ca2+ release in cells. The ER is sensitive to stresses that can lead to the aggregation and accumulation of misfolded proteins, which eventually triggers cellular dysfunction; severe or prolonged ER stress eventually induces apoptosis. ER stress-induced apoptosis causes several devastating diseases such as atherosclerosis, neurodegenerative diseases, and diabetes. In addition, the production of biopharmaceuticals such as monoclonal antibodies requires the maintenance of normal ER functions to achieve and maintain the production of high-quality products in good quantities. Therefore, it is necessary to develop methods to efficiently relieve ER stress and protect cells from ER stress-induced apoptosis. The silkworm storage protein 1 (SP1) has anti-apoptotic activities that inhibit the intrinsic mitochondrial apoptotic pathway. However, the role of SP1 in controlling ER stress and ER stress-induced apoptosis has not been investigated. In this paper, we demonstrate that SP1 can inhibit apoptosis induced by a well-known ER stress inducer, thapsigargin, by alleviating the decrease in cell viability and mitochondrial membrane potential. Interestingly, SP1 significantly blocked increases in CHOP and GRP78 expression as well as ER Ca2+ leakage into the cytosol following ER stress induction. This indicates that SP1 protects cells from ER stressinduced apoptosis by functioning as an upstream inhibitor of apoptosis. Therefore, studying SP1 function can offer new insights into protecting cells against ER stress-induced apoptosis for future applications in the biopharmaceutical and medicine industries.  相似文献   
14.
DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-β-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.  相似文献   
15.
16.
We investigated which isoforms of PKCs can be modulated and what their roles are during l-buthionine-S,R-sulfoximine (BSO)-induced neuronal death. We observed the isoform specific translocation of PKC-epsilon from the soluble fraction to the particulate in cortical neurons treated with 10 mM BSO. The translocation of PKC-epsilon by BSO was blocked by antioxidant trolox, suggesting the PKC-epsilon as a downstream of reactive oxygen species (ROS) elevated by BSO. Trolox inhibited the ROS elevation and the neuronal death in BSO-treated cortical cells. The BSO-induced neuronal death was remarkably inhibited by both the pharmacological inhibition of PKC-epsilon with epsilonV1-2 and the functional blockade for PKC-epsilon through overexpression of PKC-epsilon V1 region, suggesting the detrimental role of PKC-epsilon. These results suggest that PKC-epsilon is the major PKC isoform involved in the pathways triggered by ROS, leading to neuronal death in BSO-treated cortical neurons.  相似文献   
17.
We investigated the premorbid behavioral changes produced by the administration of cocaine and acute exposure to extremely low frequency (ELF) magnetic field (MF) in the mouse. ICR mice received intraperitoneal injections of cocaine at two doses (65 and 70 mg/kg) and were subsequently exposed to one of eight ELF-MF fields (2, 3, 4, 8, 10, 15, 25, or 60 Hz) of about 20 G (2 mT) intensity immediately after injection. Twelve mice were used for each of applied cocaine dose and ELF-MF level. For a given dose of cocaine, the applied MF frequencies were randomly ordered, and blind tests were carried out in which the behavior observer did not know the frequencies of MF. The premorbid behaviors were defined in the ICR mice and their changes were observed over the exposure of various ELF-MFs. Our data show that the onset times of stop rearing and tonic-clonic seizure in the 4 Hz MF exposure group are significantly different from those of the sham group.  相似文献   
18.
Sleep and Biological Rhythms - There is an increasing need for portable sleep monitoring in clinical practice, but there is no comparative study that used the same device for home and in-laboratory...  相似文献   
19.
l-threo-3,4-Dihydroxyphenylserine (DOPS) is a chiral unnatural β-hydroxy amino acid used for the treatment of Parkinson disease. We developed a continuous bioconversion system for DOPS production that uses whole-cell biocatalyst of recombinant Escherichia coli expressing l-threonine aldolase (l-TA) genes cloned from Streptomyces avelmitilis MA-4680. Maximum conversion rates were observed at 2 M glycine, 145 mM 3,4-dihydroxybenzaldehyde, 0.75% Triton-X, 5 g E. coli cells/l, pH 6.5 and 10°C. In the optimized condition, overall productivity was 8 g/l, which represents 40 times the synthesis yield possible with no optimization of conditions.  相似文献   
20.
Bcl‐xL, a member of the Bcl‐2 family, is known to inhibit apoptosis of recombinant Chinese hamster ovary (rCHO) cells induced by the addition of sodium butyrate (NaBu), which is used for the elevated expression of recombinant protein. In order to understand the intracellular effects of Bcl‐xL overexpression on CHO cells treated with NaBu, changes to the proteome caused by controlled Bcl‐xL expression in rCHO cells producing erythropoietin (EPO) in the presence of 3 mM NaBu were evaluated using two‐dimensional differential in‐gel electrophoresis (2D‐DIGE) and MS analysis. The consequences of Bcl‐xL overexpression were not limited to the apoptotic signaling pathway. Out of eight proteins regulated significantly by Bcl‐xL overexpression in 3 mM NaBu addition culture, four proteins were related to cell survival (Iq motif‐containing GTPase‐activating protein 1), cell proliferation (dihydrolipoamide‐S‐acetyltransferase, guanine nucleotide binding protein alpha interacting 2), and repair of DNA damage (BRCA and CDKN1A interacting protein). Taken together, a DIGE approach reveals that overexpression of Bcl‐xL not only inhibits apoptosis in the presence of NaBu but also affects cell proliferation and survival in various aspects. Biotechnol. Bioeng. 2010; 105: 358–367. © 2009 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号