首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   9篇
  167篇
  2021年   6篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   10篇
  2014年   10篇
  2013年   13篇
  2012年   21篇
  2011年   12篇
  2010年   12篇
  2009年   1篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
Despite recent advances in medicine, 30–40% of patients with breast cancer show recurrence underscoring the need for improved effective therapy. In this study, by in vitro screening we have selected a novel synthetic indole derivative 2,2''-diphenyl-3,3''-diindolylmethane (DPDIM) as a potential anti- breast cancer agent. DPDIM induces apoptosis both in vitro in breast cancer cells MCF7, MDA-MB 231 and MDA-MB 468 and in vivo in 7,12-dimethylbenz[α]anthracene (DMBA) induced Sprague-Dawley (SD) rat mammary tumor. Our in vitro studies show that DPDIM exerts apoptotic effect by negatively regulating the activity of EGFR and its downstream molecules like STAT3, AKT and ERK1/2 which are involved in the proliferation and survival of these cancer cells. In silico predictions also suggest that DPDIM may bind to EGFR at its ATP binding site. DPDIM furthermore inhibits EGF induced increased cell viability. We have also shown decreased expression of pro-survival factor Bcl-XL as well as increase in the level of pro-apoptotic proteins like Bax, Bad, Bim in DPDIM treated cells in vitro and in vivo. Our results further indicate that the DPDIM induced apoptosis is mediated through mitochondrial apoptotic pathway involving the caspase-cascade. To the best of our knowledge this is the first report of DPDIM for its anticancer activity. Altogether this report suggests that DPDIM could be an effective therapeutic agent for breast cancer.  相似文献   
105.
Since their discovery, germin and germin-like proteins (GLPs) were found to be associated with salt stress along with other physiological roles. Although a number of GLP family members showed spatio-temporal changes in expressional up-regulation or down-regulation upon exposure to salt stress across plant species, very little is known about any rice GLP member in relation to salt stress. Rice germin-like protein 1 (OsGLP1), belongs to “Cupin” superfamily, is a plant glycoprotein and is associated with the plant cell wall. Our previous studies on endogenous down-regulation of OsGLP1 in rice and heterologous expression in tobacco documented that the OsGLP1 possessing superoxide dismutase activity is involved in cell wall cross-linking and fungal disease resistance in plants. In the present study, the transgenic rice lines having reduced OsGLP1 expression were analyzed in advanced generation for deciphering the involvement of OsGLP1 under salt stress. OsGLP1 gene-silencing construct integated transgenic lines were confirmed by Southern hybridization and RNA-interfernce (RNAi) mediated gene-silencing of the transgenic rice lines was confirmed by northern blot analysis. The expression of endogenous OsGLP1 protein level was found to be reduced in salt sensitive indica rice cultivar Badshahbhog following salt stress. Additionally, the RNAi-mediated OsGLP1 gene-silencing in transgenic rice lines resulted improved salt tolerance as compared to the untransformed ones during seed germination, initial establishment, early seedling growth and callus proliferation. Salt tolerance nature of the OsGLP1 gene-silenced plants at early stages of growth and development depicted the negative correlation between the OsGLP1 expression and salt tolerance of rice.  相似文献   
106.
The FK506-binding proteins (FKBPs) are known both as the receptors for immunosuppressant drugs and as prolyl isomerase (PPIase) enzymes that catalyse rotation of prolyl bonds. FKBPs are characterised by the inclusion of at least one FK506-binding domain (FKBd), the receptor site for proline and the active site for PPIase catalysis. The FKBPs form large and diverse families in most organisms, with the largest FKBP families occurring in higher plants. Plant FKBPs are molecular chaperones that interact with specific protein partners to regulate a diversity of cellular processes. Recent studies have found that plant FKBPs operate in intricate and coordinated mechanisms for regulating stress response and development processes, and discoveries of new interaction partners expand their cellular influences to gene expression and photosynthetic adaptations. This review presents an examination of the molecular and structural features and functional roles of the higher plant FKBP family within the context of these recent findings, and discusses the significance of domain conservation and variation for the development of a diverse, versatile and complex chaperone family.  相似文献   
107.
Journal of Plant Growth Regulation - Tuberose (Polianthes tuberosa L.) is a tuberous, perennial, night-blooming ornamental plant which is commercially cultivated in different parts of India. In the...  相似文献   
108.
Some amino acids, particularly glycine and serine, favour the accumulation in the fermentation broth of three phosphorylated amino sugar compounds that are intermediates in the pathway of neomycin biosynthesis by Streptomyces fradiae 3535. The compounds were separated and purified further by Amberlite IRC-50 (NH(4) (+) form). The intermediates were characterized by physicochemical methods as neomycin B pyrophosphate (C(23)H(48)N(6)O(19)P(2),3H(2)O), neomycin C pyrophosphate (C(23)H(48)N(6)O(19)P(2),3H(2)O) and neomycin C dipyrophosphate complex (C(24)H(66)N(8)O(33)P(4)).  相似文献   
109.
Iwakiri D  Samanta M  Takada K 《Uirusu》2006,56(2):201-208
Epstein-Barr virus (EBV) is the DNA tumor virus, which is known to be relevant to various cancers. EBV maintains latent infection in cancer cells, and there are three types of latent infection (type I-III) according to the patterns of viral latent genes expression. EBV has the ability to transform B cells into immortalized lymphoblastoid cell lines (LCL) showing type III latency, in which all latent genes are expressed. The mechanism of B-cell transformation has provided a model of EBV-associated lymphomas in immunosuppressed individuals. In type I and II latency, the limited numbers of latent genes are expressed. Previous studies have demonstrated the oncogenic functions of latent EBV genes including nuclear antigen EBNA1, membrane protein LMP1 and LMP2A. In addition, we have demonstrated that EBV-encoded small RNA EBERs play a significant role in oncogenesis. Here we summarize recent progresses in the studies on molecular mechanisms of EBV-mediated oncogenesis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号