首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   56篇
  2022年   8篇
  2021年   15篇
  2020年   13篇
  2019年   13篇
  2018年   10篇
  2017年   5篇
  2016年   13篇
  2015年   21篇
  2014年   28篇
  2013年   29篇
  2012年   60篇
  2011年   46篇
  2010年   30篇
  2009年   16篇
  2008年   37篇
  2007年   44篇
  2006年   41篇
  2005年   32篇
  2004年   36篇
  2003年   18篇
  2002年   23篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   8篇
  1989年   7篇
  1988年   3篇
  1987年   3篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1974年   4篇
  1973年   7篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1964年   2篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
151.
Numerous cultural aspects, mainly based on historical records, suggest a common origin of the Middle-Eastern Arab Muslim and Jewish populations. This is supported, to some extent, by Y-chromosome haplogroup analysis of Middle-Eastern and European samples. Up to date, no genomic regions that are shared among Arab Muslim and Jewish chromosomes and are unique to these populations have been reported. Here, we report of a rare achromatopsia-causing CNGA3 mutation (c.1585G>A) presents in both Arab Muslim and Oriental Jewish patients. A haplotype analysis of c.1585G>A-bearing chromosomes from Middle Eastern and European origins revealed a shared Muslim–Jewish haplotype, which is different from those detected in European patients, indicating a recurrent mutation stratified by a Jewish–Muslim founder effect. Comprehensive whole-genome haplotype analysis using 250 K single nucleotide polymorphism arrays revealed a large homozygous region of ~11 Mbp shared by both Arab Muslim and Oriental Jewish chromosomes. A subsequent microsatellite analysis of a 21.5 cM interval including CNGA3 and the adjacent chromosome 2 centromere revealed a unique and extremely rare haplotype associated with the c.1585G>A mutation. The age of the shared c.1585G>A mutation was calculated using the microsatellite genotyping data to be about 200 generations ago. A similar analysis of mutation age based on the Arab Muslim data alone showed that the mutation was unlikely to be the product of a recent gene flow event. The data present here demonstrate a large (11 Mbp) genomic region that is likely to originate from an ancient common ancestor of Middle-Eastern Arab Muslims and Jews who lived approximately 5,000 years ago.  相似文献   
152.
Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.  相似文献   
153.
Apoptosis of oligodendrocytes (ODCs), the myelin-producing glial cells in the CNS, plays a central role in demyelinating diseases such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To investigate the mechanism behind ODC apoptosis in EAE, we made use of conditional knockout mice lacking the adaptor protein FADD specifically in ODCs (FADD(ODC-KO)). FADD mediates apoptosis by coupling death receptors with downstream caspase activation. In line with this, ODCs from FADD(ODC-KO) mice were completely resistant to death receptor-induced apoptosis in vitro. In the EAE model, FADD(ODC-KO) mice followed an ameliorated clinical disease course in comparison with control littermates. Lymphocyte and macrophage infiltration into the spinal cord parenchyma was significantly reduced, as was the extent of demyelination and proinflammatory gene expression. Collectively, our data show that FADD is critical for ODC apoptosis and the development of autoimmune demyelinating disease.  相似文献   
154.
155.
During the course of tumorigenesis, cells acquire a number of alterations that contribute to the acquisition of the malignant phenotype, allowing them to survive and flourish in increasingly hostile environments. Cancer cells can be characterized by perturbations in the control of cell proliferation and growth, resistance to death, and alterations in their interactions with the microenvironment. Underpinning many of these changes are shifts in metabolism that allow cancer cells to use alternative pathways for energy production and building the macromolecules necessary for growth, as well as regulating the generation of signaling molecules such as reactive oxygen species (ROS). In the past few years, it became clear that p53, the most studied, if not most important, tumor suppressor protein, can also directly control metabolic traits of cells.Given the importance of metabolic reprogramming in tumor development, it is no surprise that many oncogenes and tumor suppressor genes have been shown to help control these pathways (DeBerardinis et al. 2008a; Tennant et al. 2009). In most cases, these effects are fairly clear—proteins that can promote cancer development drive the metabolic transformation associated with malignancies and tumor suppressor proteins oppose these effects. p53 plays a central and key role in preventing cancer development (Vousden and Prives 2009), but the regulation of metabolism by p53 is proving to be far from straightforward. Although the explanation for this complexity is not clear, there are several obvious and ultimately testable models. What is evident, however, is that the regulation of metabolic pathways is an important facet of p53 function that may provide us with some novel and effective new therapeutic targets, for cancer and maybe also other diseases.  相似文献   
156.
Evolutionary conservation of domain-domain interactions   总被引:3,自引:1,他引:2  

Background

Recently, there has been much interest in relating domain-domain interactions (DDIs) to protein-protein interactions (PPIs) and vice versa, in an attempt to understand the molecular basis of PPIs.

Results

Here we map structurally derived DDIs onto the cellular PPI networks of different organisms and demonstrate that there is a catalog of domain pairs that is used to mediate various interactions in the cell. We show that these DDIs occur frequently in protein complexes and that homotypic interactions (of a domain with itself) are abundant. A comparison of the repertoires of DDIs in the networks of Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens shows that many DDIs are evolutionarily conserved.

Conclusion

Our results indicate that different organisms use the same 'building blocks' for PPIs, suggesting that the functionality of many domain pairs in mediating protein interactions is maintained in evolution.  相似文献   
157.
During homologous recombination (HR), a heteroduplex DNA is formed as a consequence of strand invasion. When the two homologous strands differ in sequence, a mismatch is generated. Earlier studies showed that mismatched heteroduplex often triggers abortion of recombination and that a pivotal component of this pathway is the mismatch repair Msh2 protein. In this study, we analysed the roles of AtMSH2 in suppression of recombination in Arabidopsis. We report that AtMSH2 has a broad range of anti-recombination effects: it suppresses recombination between divergent direct repeats in somatic cells or between homologues from different ecotypes during meiosis. This is the first example of a plant gene that affects HR as a function of sequence divergence and that has an anti-recombination meiotic effect. We discuss the implications of these results for plant improvement by gene transfer across species.  相似文献   
158.
IL-1 beta-deficient mice are resistant to induction of experimental SLE   总被引:1,自引:0,他引:1  
IL-1 is one of the most pleiotropic pro-inflammatory and immunostimulatory cytokines. Overproduction of IL-1 has been shown to be involved in the pathogenicity of various autoimmune inflammatory diseases, including systemic lupus erythematosus (SLE). However, the different contributions that the IL-1 agonistic molecules make in their in vivo native milieu, IL-1beta which is mainly secreted against IL-1alpha which is mainly cell-associated, have not been established. Experimental SLE can be induced in mice by injection with monoclonal anti-DNA antibodies bearing a major idiotype designated, 16/6Id. In the present study, experimental SLE was induced in mice deficient in specific IL-1 molecules, i.e. IL-1alpha(-/-), IL-1beta(-/-), IL-1alpha/beta(-/-) (double KO) and in control BALB/c mice. Mice deficient in IL-1beta , i.e. IL-1beta(-/-) and IL-1alpha/beta(-/-) mice, developed lower levels of anti-dsDNA antibodies after immunization with 16/6Id, as compared to IL-1alpha(-/-) or control BALB/c mice. Disease manifestations were milder in mice deficient in IL-1beta expression. The representative cytokine cascade that is characteristic of overt experimental SLE was also shown to be reduced in groups of mice that lacked IL-1beta as compared to mice deficient in IL-1alpha, which is mainly cell-associated. Altogether, our results point to the importance of secretable IL-1beta, rather than cell-associated IL-1alpha, in the immunostimulatory and inflammatory phenomena that mediate the pathogenesis of experimental SLE.  相似文献   
159.
Site-specific infrared dichroism is an emerging method capable of proposing a model for the backbone structure of a transmembrane alpha-helix within a helical bundle. Dichroism measurements of single, isotopically enhanced vibrational modes (e.g., Amide I 13C=18O or Gly CD2 stretching modes) can yield precise orientational restraints for the monomer helix protomer that can be used as refinement constraints in model building of the entire helical bundle. Essential, however, for the interpretation of the dichroism measurements, is an accurate modeling of the sample disorder. In this study we derive an enhanced and more realistic modeling of the sample disorder based on a Gaussian distribution of the chromophore around a particular angle. The enhanced utility of the Gaussian model is exemplified by the comparative data analysis based on the aforementioned model to previously employed models.  相似文献   
160.
Protein kinase C (PKC) encodes a family of enzymes implicated in cellular differentiation, growth control, and tumor promotion. However, very little is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that PKCeta associates with the cyclin E/Cdk2 complex. This is shown for the ectopically overexpressed PKCeta in NIH-3T3 cells, the inducibly expressed PKCeta in MCF-7 cells (under control of the tetracycline-responsive promoter), and the endogenously expressed PKCeta in mouse mammary epithelial HC11 cells. Subcellular cell fractionation experiments revealed that the complex with cyclin E is formed mostly in the nuclear fractions, although in these cells PKCeta is predominantly expressed in the cytosolic fractions. The complex of PKCeta and cyclin E was studied at various phases of the cell cycle, in serum-starved quiescent cells and in cells stimulated with serum to reenter the cell cycle. Interestingly, the interaction between PKCeta and cyclin E was most prominent in serum-starved cells and was disintegrated when cells entered the cells cycle. Immunofluorescence staining demonstrated that in serum-starved cells PKCeta is concentrated at the perinuclear zone, which is also the site of its colocalization with cyclin E. Colocalization of PKCeta and cyclin E in the perinuclear region was observed in serum-starved cells, and less in proliferating cells. These experiments suggest that the interaction between PKCeta and cyclin E is carefully regulated, and is correlated with the inactivated form of the cyclin E/Cdk2 complex. Thus, our studies support an important link between PKC and cell cycle control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号