首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   29篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2016年   7篇
  2015年   8篇
  2014年   10篇
  2013年   13篇
  2012年   23篇
  2011年   14篇
  2010年   15篇
  2009年   19篇
  2008年   17篇
  2007年   24篇
  2006年   23篇
  2005年   25篇
  2004年   39篇
  2003年   19篇
  2002年   13篇
  2001年   7篇
  2000年   22篇
  1999年   12篇
  1998年   6篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   6篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
41.
In structural genomics centers, nuclear magnetic resonance (NMR) screening is in increasing use as a tool to identify folded proteins that are promising targets for three-dimensional structure determination by X-ray crystallography or NMR spectroscopy. The use of 1D 1H NMR spectra or 2D [1H,15N]-correlation spectroscopy (COSY) typically requires milligram quantities of unlabeled or isotope-labeled protein, respectively. Here, we outline ways towards miniaturization of a structural genomics pipeline with NMR screening for folded globular proteins, using a high-density micro-fermentation device and a microcoil NMR probe. The proteins are micro-expressed in unlabeled or isotope-labeled media, purified, and then subjected to 1D 1H NMR and/or 2D [1H,15N]-COSY screening. To demonstrate that the miniaturization is functioning effectively, we processed nine mouse homologue protein targets and compared the results with those from the “macro-scale” Joint Center of Structural Genomics (JCSG) high-throughput pipeline. The results from the two pipelines were comparable, illustrating that the data were not compromised in the miniaturized approach.  相似文献   
42.
43.
44.
45.
Sea urchin spermatozoa are model cells for studying signal transduction events underlying flagellar motility and the acrosome reaction. We previously described the sea urchin sperm receptor for egg jelly 1 (suREJ1) which consists of 1450 amino acids, has one transmembrane segment and binds to the fucose sulfate polymer of egg jelly to induce the sperm acrosome reaction. We also cloned suREJ3 which consists of 2681 amino acids and has 11 putative transmembrane segments. Both these proteins localize to the plasma membrane over the acrosomal vesicle. While cloning suREJ1, we found suREJ2, which consists of 1472 amino acids, has two transmembrane segments and is present in the entire sperm plasma membrane, but is concentrated over the sperm mitochondrion. Experimental evidence suggests that, unlike suREJ1 and suREJ3, suREJ2 does not project extracellularly from the plasma membrane, but is an intracellular plasma membrane protein. All three sea urchin sperm REJ proteins possess a protein module of > 900 amino acids, termed 'the REJ module', that is shared by the human autosomal dominant polycystic kidney disease protein, polycystin-1, and PKDREJ, a testis-specific protein in mammals whose function is unknown. In the present study, we describe the sequence, domain structure and localization of suREJ2 and speculate on its possible function.  相似文献   
46.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its activity is regulated by phosphorylation in the N-terminal regulatory domain. The proline-directed serine/threonine kinase cyclin-dependent kinase 5 (cdk5) plays an important role in diverse neuronal processes. In the present study, we identify TH as a novel substrate of cdk5. We show that cdk5 phosphorylates TH at serine 31 and that this phosphorylation is associated with an increase in total TH activity. In transgenic mice with increased cdk5 activity, the immunoreactivity for phosphorylated TH at Ser-31 is enhanced in neurons of the substantia nigra, a brain region enriched with TH-positive neurons. In addition, we demonstrate that co-expression of cdk5 and its regulatory activator p35 with TH increases the stability of TH. Consistent with these findings, TH protein levels are reduced in cdk5 knock-out mice. Importantly, the TH activity and protein turnover of the phosphorylation-defective mutant TH S31A was not altered by cdk5 activity. Taken together, these data suggest that cdk5 phosphorylation of TH is an important regulator of TH activity through stabilization of TH protein levels.  相似文献   
47.
We report functional differences in constitutive and agonist-mediated endothelial barrier function between cultured primary and Clonetics human umbilical vein endothelial cells (pHUVEC and cHUVEC) grown in soluble growth factors and heparin. Basal transendothelial resistance (TER) was much lower in pHUVEC than in cHUVEC grown in medium supplemented with growth factors, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and human epithelial growth factor (EGF), and heparin. On the basis of a numerical model of TER, the increased basal TER in cHUVEC was due to effects on cell-matrix adhesion and membrane capacitance. Heparin and bFGF increased constitutive TER in cultured pHUVEC, and heparin mediated additional increases in constitutive TER in pHUVEC supplemented with bFGF. EGF attenuated bFGF-mediated increases in TER. On the basis of the numerical model, in contrast to cHUVEC, heparin and bFGF augmented TER through effects on cell-cell adhesion and membrane capacitance in pHUVEC. Thrombin mediated quantitatively greater amplitude and a more sustained decline in TER in cultured cHUVEC than pHUVEC. Thrombin-mediated barrier dysfunction was attenuated in pHUVEC conditioned in EGF in the presence or absence of heparin. Thrombin-mediated barrier dysfunction was also attenuated when monolayers were exposed to low concentrations of heparin and further attenuated in the presence of bFGF. cAMP stimulation mediated differential attenuation of thrombin-mediated barrier dysfunction between pHUVEC and cHUVEC. VEGF displayed differential effects in TER in serum-free medium. Taken together, these data demonstrate marked differential regulation of constitutive and agonist-mediated endothelial barrier function in response to mitogens and heparin stimulation.  相似文献   
48.
Neutrophil-induced coronary microvascular barrier dysfunction is an important pathophysiological event in heart disease. Currently, the precise cellular and molecular mechanisms of neutrophil-induced microvascular leakage are not clear. The aim of this study was to test the hypothesis that rho kinase (ROCK) increases coronary venular permeability in association with elevated endothelial tension. We assessed permeability to albumin (P(a)) in isolated porcine coronary venules and in coronary venular endothelial cell (CVEC) monolayers. Endothelial barrier function was also evaluated by measuring transendothelial electrical resistance (TER) of CVEC monolayers. In parallel, we measured isometric tension of CVECs grown on collagen gels. Transference of constitutively active (ca)-ROCK protein into isolated coronary venules or CVEC monolayers caused a significant increase in P(a) and decreased TER in CVECs. The ROCK inhibitor Y-27632 blocked the ca-ROCK-induced changes. C5a-activated neutrophils (10(6)/ml) also significantly elevated venular P(a), which was dose-dependently inhibited by Y-27632 and a structurally distinct ROCK inhibitor, H-1152. In CVEC monolayers, activated neutrophils increased permeability with a concomitant elevation in isometric tension, both of which were inhibited by Y-27632 or H-1152. Treatment with ca-ROCK also significantly increased CVEC monolayer permeability and isometric tension, coupled with actin polymerization and elevated phosphorylation of myosin regulatory light chain on Thr18/Ser19. The data suggest that during neutrophil activation, ROCK promotes microvascular leakage in association with actin-myosin-mediated tension development in endothelial cells.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号