首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2600篇
  免费   221篇
  2024年   1篇
  2023年   12篇
  2022年   17篇
  2021年   63篇
  2020年   33篇
  2019年   44篇
  2018年   41篇
  2017年   59篇
  2016年   61篇
  2015年   143篇
  2014年   143篇
  2013年   161篇
  2012年   188篇
  2011年   199篇
  2010年   123篇
  2009年   109篇
  2008年   174篇
  2007年   193篇
  2006年   147篇
  2005年   161篇
  2004年   148篇
  2003年   139篇
  2002年   132篇
  2001年   32篇
  2000年   22篇
  1999年   34篇
  1998年   39篇
  1997年   24篇
  1996年   23篇
  1995年   23篇
  1994年   12篇
  1993年   17篇
  1992年   10篇
  1991年   13篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   8篇
  1985年   9篇
  1984年   9篇
  1983年   1篇
  1982年   6篇
  1981年   6篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1966年   1篇
排序方式: 共有2821条查询结果,搜索用时 15 毫秒
11.
12.
Pepper ( Capsicum annuum L. cv. Keystone Resistance Giant 3) seeds were monitored during priming to determine if seed treatments which accelerate the rate of germination could be correlated with specific physiological changes within the seeds. Pepper seeds primed with −0.90 and −1.35 MPa NaCl solutions at 23°C for 18 days did not completely equilibrate with the osmotic potential of the priming solution. Seed respiratory rates indicated that priming extends the lag phase of germination following imbibition. Soluble protein levels increased 115% in primed seeds, and the uptake and incorporation of [14C(U)] labelled amino acids into the acid insoluble fraction increased throughout the priming treatments. Alcohol dehydrogenase (EC 1.1.1.1, anaerobic metabolism), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44, pentose phosphate pathway) activities remained stable throughout the priming treatment, but were higher after 6 days. than the water-imbibed controls. Aldolase (EC 4.2.1.1. glycolysis) and isocitrate lyase (EC 4.1.3.1, glyoxylate cycle) activities increased with imbibition and were 61 and 56% (respectively) higher in primed seeds as compared to the water-imbibed controls after 12 days. Treatment with the −0.90 MPa NaCl solution was more effective than the −1.35 MPa solution in improving the rate of germination, yet there were no significant differences between the protein concentrations or enzyme activities of the two priming treatments. However, the incorporation of labelled amino acids into pepper seeds was significantly higher in the −0.90 MPa priming treatment.  相似文献   
13.
Every chemosensory structure has a boundary layer surroundingit through which chemical signals must pass before contactingreceptor cells. Fluid motion in this boundary layer is slowand odor movement is mainly by diffusion. The boundary layerstructure depends upon external fluid velocities and the morphologyof the appendage. High-speed (10–200 Hz) electrochemicalrecordings from microchemical electrodes were used to quantifychemical transport in the microscale environment of three morphologicallydifferent chemosensory appendages of the lobster, Homarus americanus:lateral antennule, medial antennule and walking legs. Controlledpulses of the odor tracer (dopamine) were delivered to the threeappendages at three different flow speeds (0, 3, 6 cm/s). Theamplitudes of the pulses increased with increasing flow speed,indicating that boundary layer thickness decreased with increasingflow speed. Larger pulse amplitudes were measured in the walkinglegs than in the lateral or medial antennules at all flow speeds.In addition, larger amplitudes were recorded in the medial antennulethan the lateral antennule. Changes in pulse amplitude withincreasing flow speed were larger than changes in pulse duration.These results demonstrate that pulse amplitude is affected morethan pulse duration by boundary layer thickness and that themorphology of the receptor strucure helps determine the structureof signals arriving at receptor cells. This may explain whyanimals have adopted sampling strategies that reduce boundarylayer thickness.  相似文献   
14.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   
15.
Local application of K+ via micropressure-ejection, coupled with in vivo electrochemical detection, was used to study stimulated release from monoaminergic nerve terminals in the striatum of anesthetized rats and mice. K+-evoked releases were reversible, reproducible, and dose-dependent. In contrast, releases of electroactive species could not be evoked by local ejection of Na+. The magnitudes and time courses of K+-evoked releases recorded from the caudate nucleus of mice were greater than those seen in rats. Local application of nomifensine, a putative catecholamine reuptake blocker, augmented the magnitudes and time courses of K+-evoked releases. Releases were also recorded from brain regions adjacent the striatum; these signals were always smaller than those seen in the caudate nucleus and had amplitudes that showed good correspondence to the relative degree of dopaminergic input to these areas. These data, taken together with other information in the literature, suggest that this new technique is well suited for in situ studies of monoamine release and reuptake in intact animals.  相似文献   
16.
Detailed understanding of chemoreceptor cell transduction andfiltering depends on precise control and thus measurement ofthe chemical stimulus. In contrast to vision and hearing, accuratestimulus measurement in chemoreception has not been possibleat biologically relevant spatial and temporal scales. In thispaper we introduce a new high-speed (200 hz) electrochemicalmethod for the direct measurement of odor signals at biologicallyrelevant space scales (10-100 µm). We tested this systemin three applications: (i) temporal and spatial features ofodor plumes, (ii) stimulus calibrations in physiological recordingchambers and (iii) boundary layer diffusion measurements withinreceptor structures.  相似文献   
17.
A colony-level phenotype was used to map the major sex determination locus (designatedX) in the honey bee (Apis mellifera). Individual queen bees (reproductive females) were mated to single drones (fertile males) by instrumental insemination. Haploid drone progeny of an F1 queen were each backcrossed to daughter queens from one of the parental lines. Ninety-eight of the resulting colonies containing backcross progeny were evaluated for the trait low brood-viability resulting from the production of diploid drones that were homozygous atX. DNA samples from the haploid drone fathers of these colonies were used individually in polymerase chain reactions (PCR) with 10-base primers. These reactions generated random amplified polymorphic DNA (RAPD) markers that were analyzed for cosegregation with the colony-level phenotype. One RAPD marker allele was shared by 22 of 25 drones that fathered low brood-viability colonies. The RAPD marker fragment was cloned and partially sequenced. Two primers were designed that define a sequence-tagged site (STS) for this locus. The primers amplified DNA marker fragments that cosegregated with the original RAPD marker. In order to more precisely estimate the linkage betweenX and the STS locus, another group of bees consisting of progeny from one of the low-brood viability colonies was used in segregation analysis. Four diploid drones and 181 of their diploid sisters (workers, nonfertile females) were tested for segregation of the RAPD and STS markers. The cosegregating RAPD and STS markers were codominant due to the occurrence of fragment-length alleles. The four diploid drones were homozygous for these markers but only three of the 181 workers were homozygotes (recombinants). Therefore the distance betweenX and the STS locus was estimated at 1.6 cM. An additional linked marker was found that was 6.6 cM from the STS locus.  相似文献   
18.
In these studies, we examined the effect of a maximum-tolerated, split-dose chemotherapy protocol of cyclophosphamide, cisplatin, and 1,3-bis(2-chloroethyl)-1-nitrosourea carmustine on neutrophil and lymphocyte subpopulations in the peripheral blood (PBL), thymus, bone marrow and spleen. It was found that this protocol of polychemotherapy, modeled after the induction protocol used with autologous bone marrow transplantation for breast cancer, suppressed both B and T cell populations and T cell function at times when the absolute neutrophil count had returned to normal or supernormal numbers. In the peripheral blood, 7 days following initiation of chemotherapy, there was a twofold increase in the percentage of granulocytes as compared to the level in control animals on the basis of a differential count. The polymorphonuclear neutrophil (PMN) frequency in the bone marrow was increased on day 14 and statistically identical to that in control mice on all other days analyzed. In contrast to the bone marrow cells and PBL on day 7, the frequency of PMN in the spleen and thymus was depressed. B cells (B220+) were depressed in the PBL, spleen and bone marrow and took 18–32 days to return to their normal frequency, while the frequency of B cells in the thymus was increased owing to a loss of immature T cells. The percentage of CD3+ cells in the thymus, spleen and bone marrow was significantly increased and required 10–18 days to return to normal levels, while the absolute number of CD3+ cells in the blood varied around the normal value. The ratio of CD4+ to CD8+ cells in all the organs studied varied only slightly owing to a similar reconstitution of CD4+ and CD8+ cells. In contrast to the phenotypic recovery of the CD3+, CD4+ and CD8+ cells, the ability of the splenic lymphocytes to respond to concanavalin-A was depressed and remained depressed, despite the phenotypic reconstitution of the T cell subsets, on the basis of both percentage and absolute cell number. These results show a selective T and B cell depression following multi-drug, split-dose chemotherapy in tissue and blood leukocyte populations and a chronic depression in T cell function.  相似文献   
19.
Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg2+-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase -dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergenta availability and cation sensitivity on the apparent distribution of PAPH in neutrophil sub-cellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzyme was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号