首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   12篇
  国内免费   1篇
  2023年   1篇
  2022年   5篇
  2021年   16篇
  2020年   9篇
  2019年   7篇
  2018年   16篇
  2017年   1篇
  2016年   15篇
  2015年   17篇
  2014年   28篇
  2013年   33篇
  2012年   33篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   21篇
  2007年   20篇
  2006年   21篇
  2005年   15篇
  2004年   14篇
  2003年   10篇
  2002年   12篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1965年   3篇
排序方式: 共有392条查询结果,搜索用时 62 毫秒
321.
322.
The type III secretion apparatus (T3SA) is a multi‐protein complex central to the virulence of many Gram‐negative pathogens. Currently, the mechanisms controlling the hierarchical addressing of needle subunits, translocators and effectors to the T3SA are still poorly understood. In Shigella, MxiC is known to sequester effectors within the cytoplasm prior to receiving the activation signal from the needle. However, molecules involved in linking the needle and MxiC are unknown. Here, we demonstrate a molecular interaction between MxiC and the predicted inner‐rod component MxiI suggesting that this complex plugs the T3SA entry gate. Our results suggest that MxiI–MxiC complex dissociation facilitates the switch in secretion from translocators to effectors. We identified MxiCF206S variant, unable to interact with MxiI, which exhibits a constitutive secretion phenotype although it remains responsive to induction. Moreover, we identified the mxiIQ67A mutant that only secretes translocators, a phenotype that was suppressed by coexpression of the MxiCF206S variant. We demonstrated the interaction between MxiI and MxiC homologues in Yersinia and Salmonella. Lastly, we identified an interaction between MxiC and chaperone IpgC which contributes to understanding how translocators secretion is regulated. In summary, this study suggests the existence of a widely conserved T3S mechanism that regulates effectors secretion.  相似文献   
323.
Although Helicobacter pylori (H. pylori) is a highly significant pathogen, its source remains unclear. Many people consume chicken daily as a source of animal protein worldwide; thus, hygienic methods of supplying chickens for consumption are critical for public health. Therefore, our study examined the distribution of the glmM (ureC), babA2, vacA and cagA virulence genes in H. pylori strains in chicken meat and giblets (gizzards and livers) and the resistance of the strains to various antibiotics. Ninety chicken meat, gizzard and liver samples were obtained from a semi-automatic abattoir in Sadat City, Egypt, and were cultured and preliminarily analyzed using biochemical tests. The presence of the ureC, babA2, vacA and cagA genotypes was tested for in samples positive for H. pylori by multiplex polymerase chain reaction (Multiplex-PCR). The resistance of H. pylori to various antimicrobial drugs was tested using the disc diffusion method. In total, 7 of the 90 chicken samples were positive for H. pylori (7.78%); in 3/7 (42.85%) samples, the bacteria were found in the chicken liver, while the bacteria were found in the meat in 2/7 (28.57%) and in the gizzard in 2/7 (28.57%) samples. The total prevalence of both the ureC and babA2 genes in the isolated H. pylori strains was 100%, while the prevalence of the vacA and cagA genes was 57.1% and 42.9%, respectively. The resistance of H. pylori to the antibiotics utilized in our study was 100% for streptomycin; 85.7% for amoxicillin and penicillin; 71.4% for oxytetracycline, nalidixic acid and ampicillin; 57.1% for sulfamethoxazole and erythromycin; and 42.9% for neomycin, chloramphenicol and norfloxacin. In conclusion, the chicken meat and giblets were tainted by H. pylori, with a higher occurrence of the ureC, babA2, vacA and cagA genotypes. Future investigations should investigate the resistance of H. pylori to various antimicrobial agents in Egypt.  相似文献   
324.
325.
Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3′-phosphoadenosine 5′-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5′-3′ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.Programmed cell death (PCD) is a universal process in multicellular organisms, contributing to the controlled and active degradation of the cell. In plants, PCD is required for processes as diverse as development, self-incompatibility, and stress response. One well-documented example is the induction of PCD upon pathogen attack, allowing the confinement of the infection, and resistance of the plant. The signaling events leading to the onset of PCD have been extensively studied: pathogen recognition triggers activation of mitogen-activated protein kinase cascades, as well as production of reactive oxygen species (ROS) and salicylic acid (SA), which lead to a hypersensitive response (Coll et al., 2011).From a cellular point of view, several classes of plant PCD have been described and compared with the ones found in animal cells (van Doorn, 2011). PCD is thought to have evolved independently in plants and animals, and genes underlying these mechanisms are therefore poorly conserved between the two kingdoms. However, most cellular features are conserved between plant and animal PCD that are both characterized by cell shrinkage, chromatin condensation, DNA laddering, mitochondria permeabilization, and depolarization (Dickman and Fluhr, 2013). In animal cells, mitochondria play a central role in the regulation of apoptosis (Czabotar et al., 2014; Mariño et al., 2014), and this role is likely shared between the two kingdoms (Lord and Gunawardena, 2012). That said, additional mitochondria-independent PCD pathways have clearly evolved in plants.Genetic approaches have greatly contributed to our understanding of cellular pathways governing PCD in plants. For example, the isolation of lesion mimic mutants (LMMs), in which cell death occurs spontaneously, has allowed the identification of several negative regulators of cell death (for review, see Bruggeman et al., 2015b). Interestingly, lesion formation is light dependent in several of these mutants, which include one of the best characterized LMMs—lesions simulating disease1 (lsd1; Dietrich et al., 1994). The LSD1 protein is required for plant acclimation to excess excitation energy (Mateo et al., 2004): when plants are exposed to excessive amounts of light, the redox status of the plastoquinone pool in the chloroplastic electron transfer chain is thought to influence LSD1-dependent signaling to modulate cell death (Mühlenbock et al., 2008). Additionally, we have previously identified the myoinositol phosphate synthase1 (mips1) mutant as a LMM, in which lesion formation is also light dependent (Meng et al., 2009). This mutant is deficient in the myoinositol (MI) phosphate synthase that catalyzes the first committed step of MI biosynthesis and displays pleiotropic defects such as reduced root growth, abnormal vein development, and spontaneous cell death on leaves, together with severe growth reduction after lesions begin to develop (Meng et al., 2009; Donahue et al., 2010). The light-dependent PCD in the mips1 mutant, as observed for lsd1, suggests that chloroplasts may play a role in the MI-dependent cell death regulation. Accumulating evidence suggests that chloroplasts may play a central role in PCD regulation like mitochondria in animal cells (Wang and Bayles, 2013). First, as described in the case of lsd1, excess light energy received by the chloroplast can function as a trigger for PCD. Furthermore, singlet oxygen (1O2), a ROS, can activate the EXECUTER1 (EX1) and EX2 proteins in the chloroplasts to initiate PCD (Lee et al., 2007). Likewise, ROS generated by chloroplasts play a major role for PCD onset during nonhost interaction between tobacco (Nicotiana tabacum) and Xanthomonas campestris (Zurbriggen et al., 2009). Finally, functional chloroplasts have also been shown to be required for PCD in cell suspensions (Gutierrez et al., 2014) and in a number of LMMs (Mateo et al., 2004; Meng et al., 2009; Bruggeman et al., 2015b). Thus, chloroplasts are now recognized as important components of plant defense response against pathogens (Stael et al., 2015) and are proposed to function with mitochondria in the execution of PCD (Van Aken and Van Breusegem, 2015). However, the exact signaling and metabolic contribution of chloroplasts to PCD remain to be elucidated. Furthermore, cross talk between chloroplasts and mitochondria does occur, such as during photorespiration (Sunil et al., 2013), but whether such communication functions sequentially or in parallel in the control of PCD remains to be determined (Van Aken and Van Breusegem, 2015).To further investigate how chloroplasts contribute to the regulation of cell death, we performed both forward and reverse genetics on the mips1 mutant. An extragenic secondary mutation in divinyl protochlorophyllide 8-vinyl reductase involved in chlorophyll biosynthesis leads to chlorophyll deficiency that abolishes the mips1 cell death phenotype, as do changes in CO2 availability. These findings provide evidence for a link between photosynthetic activity and PCD induction in mips1. Additionally, we investigated the contribution of several retrograde signaling pathways (Chan et al., 2015) to the control of PCD in mips1. This process was independent of GENOMES UNCOUPLED (GUN) and EX signaling pathways, but we found that the SAL1-PAP_XRN retrograde signaling pathway inhibits cell death as well as basal defense reactions in Arabidopsis (Arabidopsis thaliana).  相似文献   
326.
Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types.  相似文献   
327.
Schistosoma haematobium is one of the most prevalent parasitic flatworms, infecting over 112 million people in Africa. However, little is known about the genetic diversity of natural S. haematobium populations from the human host because of the inaccessible location of adult worms in the host. We used 4 microsatellite loci to genotype individually pooled S. haematobium eggs directly from each patient sampled at 4 endemic locations in Africa. We found that the average allele number of individuals from Mali was significantly higher than that from Nigeria. In addition, no significant difference in allelic composition was detected among the populations within Nigeria; however, the allelic composition was significantly different between Mali and Nigeria populations. This study demonstrated a high level of genetic variability of S. haematobium in the populations from Mali and Nigeria, the 2 major African endemic countries, suggesting that geographical population differentiation may occur in the regions.  相似文献   
328.
Shiga toxin-producing Escherichia coli (STEC) strains are considered as one of the major food-borne disease agents in humans worldwide. STEC strains, also called verotoxin-producing E. coli strains. The objectives of the present study were serotyping and molecular characterization of shiga toxigenic E. coli associated with raw meat and milk samples collected from Riyadh, Saudi Arabia. A total of 540 milk samples were collected from 5 dairy farms and 150 raw meat samples were collected from different abattoirs located in Riyadh, Saudi Arabia. E. coli were recovered from 86 milk samples (15.93%), serotyping of E. coli isolates revealed, 26 (4.81%) strains O157: H7, 23 (4.26%) strains O111, 20 (3.70%) strains O113: H21, 10 (1.85%) strains O22: H8 and 7 (1.3%) strains O172: H21. Meanwhile, 17 (11.33%) strains of E. coli were recovered from raw meat samples, serotyping of E. coli isolates revealed, 6 (4%) strains O157: H7, 5 (3.33%) strains O111 and 4 (2.67%) strains O174: H2 and only two (1.33%) strains were identified as O22: H8. Shiga toxin2 was detected in 58 (67.44%) serotypes of E. coli recovered from milk samples and 16 (94.12%) serotypes of E. coli recovered from meat samples, while intimin gene was detected in 38 (44.186%) serotypes of E. coli recovered from milk samples and in 10 (58.82%) serotypes of E. coli recovered from meat samples. The results of this study revealed the efficiency of combination between serotyping and molecular typing of E. coli isolates recovered from food of animal origin for rapid detection and characterization of STEC.  相似文献   
329.
The present study was undertaken to explore the effect of administration of high doses of sodium selenite on the expression of Bcl-2 in patients with non-Hodgkin’s lymphoma (NHL). Fifty patients with newly diagnosed NHL were randomly divided into two groups. Group A-I received standard chemotherapy whereas group A-II received adjuvant sodium selenite 0.2 mg kg−1 day−1 for 30 days in addition to chemotherapy. Enzyme-linked immunosorbent assay was used to assess Bcl-2 at the time of diagnosis and after therapy in the two groups. Sodium selenite administration resulted in significant decline of Bcl-2 level after therapy in group A-II (8.6 ± 6.9 ng/ml vs 3 6.9 ± 7.9 ng/ml, P < 0.05). Also, complete response reached 60% in group A-II compared to 40% in group A-I. Significant increase in CD4/CD8 ratio was noticed in group A-II compared to group A-I after therapy (1.45 ± 0.36 vs 1.10 ± 0.28 p 0.04). Overall survival time in months was significantly longer in complete remission patients in group A-II (21.87 ± 1.41) compared to group A-I (19.70 ± 1.95) (p = 0.01). It is concluded that sodium selenite administration at the dosage and duration chosen acts as a downregulator of Bcl-2 and improves clinical outcome.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号