首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   84篇
  国内免费   1篇
  2023年   5篇
  2021年   15篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   17篇
  2015年   23篇
  2014年   28篇
  2013年   21篇
  2012年   29篇
  2011年   37篇
  2010年   23篇
  2009年   25篇
  2008年   25篇
  2007年   29篇
  2006年   20篇
  2005年   13篇
  2004年   12篇
  2003年   18篇
  2002年   21篇
  2001年   15篇
  2000年   13篇
  1999年   14篇
  1998年   9篇
  1997年   4篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   8篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   10篇
  1983年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1974年   5篇
  1973年   3篇
  1923年   4篇
  1919年   5篇
  1917年   3篇
  1909年   4篇
  1908年   3篇
  1900年   4篇
  1899年   3篇
排序方式: 共有613条查询结果,搜索用时 31 毫秒
61.
Detection of the principal protein target of a hepatic carcinogen   总被引:1,自引:0,他引:1  
Antiserum was prepared against the principal liver protein conjugate of the hepatic carcinogen, 3′-methyl-4-dimethylaminoazobenzene. One precipitin band was obtained when the antiserum reacted with the purified conjugate in double immunodiffusion gel analysis. The same anti-serum detected two proteins in rat liver cytosol. Of these two proteins, one was immunoreactively identical to the purified antigen; in contrast, the other protein was only partly identical to it. Absorption of the antiserum with rat kidney cytosol yielded specific antiserum that reacted only with the protein that was immunologically identical to the purified conjugate. That protein, detected in normal rat liver cytosol, is apparently the principal protein target of the azocarcinogens in liver carcinogenesis.  相似文献   
62.
63.
MOTIVATION: Sequence alignments obtained using affine gap penalties are not always biologically correct, because the insertion of long gaps is over-penalised. There is a need for an efficient algorithm which can find local alignments using non-linear gap penalties. RESULTS: A dynamic programming algorithm is described which computes optimal local sequence alignments for arbitrary, monotonically increasing gap penalties, i.e. where the cost g(k) of inserting a gap of k symbols is such that g(k) >/= g(k-1). The running time of the algorithm is dependent on the scoring scheme; if the expected score of an alignment between random, unrelated sequences of lengths m, n is proportional to log mn, then with one exception, the algorithm has expected running time O(mn). Elsewhere, the running time is no greater than O(mn(m+n)). Optimisations are described which appear to reduce the worst-case run-time to O(mn) in many cases. We show how using a non-affine gap penalty can dramatically increase the probability of detecting a similarity containing a long gap. AVAILABILITY: The source code is available to academic collaborators under licence.  相似文献   
64.
A mechanism for co-ordinating behaviour of stomata within an areole during patchy stomatal conductance has recently been proposed. This mechanism depends on hydraulic interactions among stomata that are mediated by transpiration-induced changes in epidermal turgor. One testable prediction that arises from this proposed mechanism is that the strength of hydraulic coupling among stomata should be proportional to evaporative demand and, therefore, inversely proportional to humidity. When a leaf is illuminated following a period of darkness, there is typically a period of time, termed the Spannungsphase, during which guard cell osmotic and turgor pressure are increasing, but the pore remains closed. If hydraulic coupling is proportional to evaporative demand, then variation among stomata in the duration of the Spannungsphase should be lower for leaves at low humidity than for leaves at high humidity. A similar prediction emerged from a computer model based on the proposed hydraulic mechanisms. These predictions were tested by measuring individual stomatal apertures on intact transpiring leaves at low and high humidity and on vacuum-infiltrated leaf pieces (to eliminate transpiration) as PFD was increased to high values from either darkness or a low value. Results showed that the range of Spannungsphasenamong stomata was reduced at low humidity compared to high humidities. Experiments that began at low PFD, rather than at darkness, showed no delay in stomatal opening. These results are discussed in the context of the proposed hydraulic coupling mechanisms.  相似文献   
65.
Bacteria engage in a complex network of ecological interactions, which includes mobile genetic elements (MGEs) such as phages and plasmids. These elements play a key role in microbial communities as vectors of horizontal gene transfer but can also be important sources of selection for their bacterial hosts. In natural communities, bacteria are likely to encounter multiple MGEs simultaneously and conflicting selection among MGEs could alter the bacterial evolutionary response to each MGE. Here, we test the effect of interactions with multiple MGEs on bacterial molecular evolution in the tripartite interaction between the bacterium, Pseudomonas fluorescens, the lytic bacteriophage, SBW25φ2, and conjugative plasmid, pQBR103, using genome sequencing of experimentally evolved bacteria. We show that individually, both plasmids and phages impose selection leading to bacterial evolutionary responses that are distinct from bacterial populations evolving without MGEs, but that together, plasmids and phages impose conflicting selection on bacteria, constraining the evolutionary responses observed in pairwise interactions. Our findings highlight the likely difficulties of predicting evolutionary responses to multiple selective pressures from the observed evolutionary responses to each selective pressure alone. Understanding evolution in complex microbial communities comprising many species and MGEs will require that we go beyond studies of pairwise interactions.  相似文献   
66.
Herein, we provide external and internal morphological data of Scinax skuki tadpoles from its type locality. The benthic tadpole of S. skuki has eyes and nostrils positioned dorsally, vent tube dextral and reaching the free margin of the ventral fin, oral disk ventral with posterior margin concave when partially closed, labial tooth row formula 2/3, and the presence of nonpigmented spurs behind the lower jaw. These characters, together with the absence of a tectum parietale, and the shapes of the pars articularis quadrati and suprarostral, are useful for species identification and may be informative for systematic purposes.  相似文献   
67.
Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP). Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination) of at-risk species? We have used China's PSESP (the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP), storage characteristics are only known for 8% of PSESP (10 species). Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.  相似文献   
68.
Human overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.Subject terms: Genetic variation, Phylogenetics, Speciation  相似文献   
69.
70.
The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study.Enteroviruses are small, nonenveloped, positive-stranded RNA viruses that include many important pathogens, such as poliovirus (PV), coxsackievirus, echovirus, and human rhinovirus. Following virus entry and uncoating, the 7.5-kb enteroviral RNA genome is directly translated into a large polyprotein. This polyprotein is proteolytically processed by the virus-encoded proteases 2Apro, 3Cpro, and 3CDpro into the structural P1 region proteins and the nonstructural P2 and P3 region proteins that are involved in viral RNA replication.All RNA viruses with a positive-stranded genome induce the remodeling of cellular membranes to create a scaffold for genomic RNA replication. The organelle origin and morphology of these membranous replication sites, however, appear to vary for different viruses. Enteroviruses replicate their RNA genomes in nucleoprotein complexes that are associated with small vesicular membrane structures (6). The enteroviral proteins 2B, 2C, and 3A have been implicated in vesicle formation (4, 6, 27), but the mechanism and pathway of membrane reorganization are poorly understood. There are strong indications that these vesicular membranous structures, which are referred to here as “vesicles,” are derived from the early secretory pathway. Vesicles produced in PV-infected cells may form at the endoplasmic reticulum (ER) by the cellular COP-II budding machinery and may therefore share components with the membranous vesicles mediating ER-to-Golgi network transport (26). Further support for the involvement of the secretory pathway stems from the observation that brefeldin A (BFA), a well-known inhibitor of ER-to-Golgi network transport, completely inhibits enteroviral RNA replication (17, 20). In addition, the autophagocytic pathway appears to contribute to the formation of the membrane vesicles, many of which exhibit a double-membrane morphology characteristic of autophagosomes (18, 27). The utilization of individual components or reactions from different membrane metabolic pathways, rather than subversion of an entire pathway in toto, may represent a common strategy for building viral replication machinery.BFA inhibits activation of the small monomeric GTPase ADP ribosylation factor 1 (Arf1), a major regulator of intracellular protein transport (2). Arf1 cycles between an inactive, GDP-bound, cytosolic state and an active, GTP-bound, membrane-associated state, and this cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (13). BFA blocks the activities of the large GEFs GBF1, BIG1, and BIG2 by stabilizing an intermediate, abortive complex with inactive Arf1 (23), thus efficiently preventing activation of Arf1 and eventually formation of transport intermediates.Not only the fact that BFA blocks enteroviral replication suggests a role for Arf1 and/or its large GEFs in this process; recently, it was shown that Arf1 accumulates on membranes during PV infection (3). Arf1 translocation to membranes can be induced independently by enterovirus protein 3A or 3CD in vitro (5), but the underlying mechanisms seem to differ; the 3A protein specifically triggers the recruitment of GBF1 to membranes, most likely through a direct interaction with this GEF (32, 33), whereas 3CD recruits BIG1 and BIG2 to membranes (3). Here, we report the involvement of Arf1 and its large BFA-sensitive GEFs in coxsackievirus B3 (CVB3) replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号