首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   20篇
  2022年   3篇
  2021年   10篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   12篇
  2012年   18篇
  2011年   19篇
  2010年   14篇
  2009年   13篇
  2008年   13篇
  2007年   23篇
  2006年   19篇
  2005年   31篇
  2004年   21篇
  2003年   29篇
  2002年   24篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有342条查询结果,搜索用时 15 毫秒
141.
Summary The function of adipose differentiation-related protein (ADRP) is known to be the uptake of long-chain fatty acids and formation of lipid droplets in lipid-accumulating cells. We hypothesized that ADRP might stimulate activated hepatic stellate cells (HSCs) to accumulate lipids, resulting in their transition to the quiescent state. In this study, cultured HSCs in fifth passages isolated from rat were infected by adenovirus vector expressing ADRP (Ad.GFP-ADRP), and morphologic and functional changes were evaluated in comparison with control HSCs infected by recombinant adenovirus-expressing β-galactosidase (Ad. LacZ). In Ad. GFP-ADRP-infected cells only, many tiny lipid droplets were apparent in the cytoplasm, while the outline of the cells was not changed. The ADRP was detected around the lipid droplets. In HSCs with intracellular actin filaments, the staining pattern of the filaments before and after infection with Ad.GFP-ADRP or Ad.LacZ did not differ. The cell proliferation rate was not influenced by infection with Ad.LacZ or Ad.GFP-ADRP. Type I collagen secretion from cells overexpressing ADRP was not significantly different from that of Ad.LacZ-infected cells. In our in vitro study, ADRP overexpression induced the formation of cytoplasmic lipid droplets in activated HSCs but could not convert other characteristics of the activated form into those of the quiescent form.  相似文献   
142.
143.
Protoplasts of the basidiomycete, Fomitopsis palustris (formerly Tyromyces palustris), were utilized to study a function of the fungal plasma membrane. Fungal protoplasts exhibited metabolic activities as seen with intact mycelial cells. Furthermore, the uptake of certain compounds into the protoplast cells was quantitatively observed by using non-radioactive compounds. Vanillin was converted to vanillyl alcohol and vanillic acid as major products and to protocatechuic acid and 1,2,4-trihydroxybenzene as trace products by protoplasts prepared from F. palustris. Extracellular culture medium showed no activity responsible for the redox reactions of vanillin. Only vanillic acid was detected in the intracellular fraction of protoplasts. However, the addition of disulfiram, an aldehyde dehydrogenase inhibitor, caused an intracellular accumulation of vanillin, strongly suggesting that vanillin is taken up by the cell, followed by oxidation to vanillic acid. The addition of carbonylcyanide m-chlorophenylhydrazone, which dissipates the pH gradient across the plasma membrane, inhibited the uptake of either vanillin or vanillic acid into the cell. Thus, the fungus seems to possess transporter devices for both vanillin and vanillic acid for their uptake. Since vanillyl alcohol was only observed extracellularly, the reduction of vanillin was thought to be catalyzed by a membrane system.  相似文献   
144.
The mammalian cell cycle is involved in many processes--such as immune responses, maintenance of epithelial barrier functions, and cellular differentiation--that affect the growth and colonization of pathogenic bacteria. Therefore it is not surprising that many bacterial pathogens manipulate the host cell cycle with respect to these functions. Cyclomodulins are a growing family of bacterial toxins and effectors that interfere with the eukaryotic cell cycle. Here, we review some of these cyclomodulins such as cytolethal distending toxins, vacuolating cytotoxin, the polyketide-derived macrolide mycolactone, cycle-inhibiting factor, cytotoxic necrotizing factors, dermonecrotic toxin, Pasteurella multocida toxin and cytotoxin-associated antigen A. We describe and compare their effects on the mammalian cell cycle and their putative role in disease, commensalism and symbiosis. We also discuss a possible link between these cyclomodulins and cancer.  相似文献   
145.
146.
147.
A rice (Oryza sativa L.) semi-dwarf cultivar, Tan-Ginbozu (d35Tan-Ginbozu), contributed to the increase in crop productivity in Japan in the 1950s. Previous studies suggested that the semi-dwarf stature of d35Tan-Ginbozu is caused by a defective early step of gibberellin biosynthesis, which is catalyzed by ent-kaurene oxidase (KO). To study the molecular characteristics of d35Tan-Ginbozu, we isolated 5 KO-like (KOL) genes from the rice genome, which encoded proteins highly homologous to Arabidopsis and pumpkin KOs. The genes (OsKOL1 to 5) were arranged as tandem repeats in the same direction within a 120 kb sequence. Expression analysis revealed that OsKOL2 and OsKOL4 were actively transcribed in various organs, while OsKOL1 and OsKOL5 were expressed only at low levels; OsKOL3 may be a pseudogene. Sequence analysis and complementation experiments demonstrated that OsKOL2 corresponds to D35. Homozygote with null alleles of D35 showed a severe dwarf phenotype; therefore, d35Tan-Ginbozu is a weak allele of D35. Introduction of OsKOL4 into d35Tan-Ginbozu did not rescue its dwarf phenotype, indicating that OsKOL4 is not involved in GA biosynthesis. OsKOL4 and OsKOL5 are likely to take part in phytoalexin biosynthesis, because their expression was promoted by UV irradiation and/or elicitor treatment. Comparing d35Tan-Ginbozu with other high yielding cultivars, we discuss strategies to produce culm architectures suitable for high crop yield by decreasing GA levels.  相似文献   
148.
The freshwater prawn Macrobrachium rosenbergii shows three male morphotypes: blue-claw males (final stage having high mating activity), orange-claw males (transitional stage showing rapid somatic growth), and small males (primary stage showing sneak copulation). This morphotypic differentiation is considered to be controlled by androgenic gland hormone, which is probably a peptide hormone. However, its physiological roles are not fully understood. In the present study, we examined the correlation of androgenic gland cell structure to spermatogenic activity and morphotypic differentiation histologically in M. rosenbergii. spermatogenic activity showed close correlation to the molt cycle in orange-claw males and small males. spermatogonia increased in number in the late premolt stage, becoming spermatocytes in the postmolt stage, and spermatocytes differentiated into spermatozoa in the intermolt and early premolt stages. Ultrastructure of the androgenic gland was additionally compared among the molt stages, but, distinct histological changes were not observed in relation to spermatogenesis during the molt cycle. On the other hand, among the three morphotypes, the androgenic gland was largest in the blue-claw males, containing developed rough endoplasmic reticulum in the cytoplasm. These results suggest that, during spermatogenesis which is related to the molt cycle, the androgenic gland hormone is at rather constant levels and plays a role in maintaining spermatogenesis rather than directly regulating the onset of a specific spermatogenesis stage and that, during the morphotypic differentiation, the androgenic gland is most active in the blue-claw males and plays a role in regulating the observed high mating activity in M. rosenbergii.  相似文献   
149.
The closure of skin wounds is essential for resistance against microbial pathogens, and keratinocyte migration is an important step in skin wound healing. Cathelicidin hCAP18/LL-37 is an innate antimicrobial peptide that is expressed in the skin and acts to eliminate microbial pathogens. Because hCAP18/LL-37 is up-regulated at skin wound sites, we hypothesized that LL-37 induces keratinocyte migration. In this study, we found that 1 microg/ml LL-37 induced the maximum level of keratinocyte migration in the Boyden chamber assay. In addition, LL-37 phosphorylated the epidermal growth factor receptor (EGFR) after 10 min, which suggests that LL-37-induced keratinocyte migration occurs via EGFR transactivation. To test this assumption, we used inhibitors that block the sequential steps of EGFR transactivation, such as OSU8-1, CRM197, anti-EGFR no. 225 Ab, and AG1478. All of these inhibitors completely blocked LL-37-induced keratinocyte migration, which indicates that migration occurs via HB-EGF-mediated EGFR transactivation. Furthermore, CRM197, anti-EGFR no. 225, and AG1478 blocked the LL-37-induced phosphorylation of STAT3, and transfection with a dominant-negative mutant of STAT3 abolished LL-37-induced keratinocyte migration, indicating the involvement of the STAT3 pathway downstream of EGFR transactivation. Finally, we tested whether the suppressor of cytokine signaling (SOCS)/cytokine-inducible Src homology 2-containing protein (CIS) family of negative regulators of STAT3 regulates LL-37-induced keratinocyte migration. Transfection with SOCS1/Jak2 binding protein or SOCS3/CIS3 almost completely abolished LL-37-induced keratinocyte migration. In conclusion, LL-37 induces keratinocyte migration via heparin-binding-EGF-mediated transactivation of EGFR, and SOCS1/Jak 2 binding and SOCS3/CIS3 negatively regulate this migration. The results of this study suggest that LL-37 closes skin wounds by the induction of keratinocyte migration.  相似文献   
150.
Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号