首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   20篇
  2022年   2篇
  2021年   10篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   12篇
  2012年   18篇
  2011年   19篇
  2010年   14篇
  2009年   13篇
  2008年   13篇
  2007年   23篇
  2006年   19篇
  2005年   31篇
  2004年   21篇
  2003年   29篇
  2002年   24篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有341条查询结果,搜索用时 31 毫秒
121.
122.
Arterial stiffness is higher in strength-trained humans and lower in endurance-trained humans. However, the mechanisms underlying these different adaptations are unclear. Vascular endothelium-derived factors, such as endothelin-1 (ET-1) and nitric oxide (NO), play an important role in the regulation of vascular tonus. We hypothesized that endogenous ET-1 and NO participate in the adaptation of arterial stiffness in different types of exercise training. The purpose of this study was to investigate plasma ET-1 and NO concentrations and arterial stiffness in strength- and endurance-trained men. Young strength-trained athletes (SA; n = 11), endurance-trained athletes (EA; n = 12), and sedentary control men (C; n = 12) participated in this study. Maximal handgrip strength in SA and maximal oxygen uptake in EA were markedly greater than in C. Aortic pulse-wave velocity, which is an established index of arterial stiffness, was higher in SA and lower in EA than in C. Additionally, we measured systemic arterial compliance (SAC) using carotid artery applanation tonometry and Doppler echocardiography, because arterial stiffness is a primary determinant of the compliance. SAC was lower in SA and higher in EA compared with that in C. Plasma ET-1 concentrations were higher in SA compared with C and EA. We did not find significant differences in plasma NO concentrations (measured as the stable end product of NO, i.e., nitrite/nitrate). The relationships of plasma ET-1 concentrations to aortic pulse-wave velocity and SAC were linear. These results suggest that differences in endogenous ET-1 may partly participate in the mechanism underlying different adaptations of arterial stiffness in strength- and endurance-trained men.  相似文献   
123.
Pseudomonas aeruginosa showing resistance to imipenem were found in 100 of 1,058 strains (9.5%) from six hospitals (a-f) in Hiroshima City, Japan. Of the 100 strains, 14 (14%) were double disk synergy test positive using sodium mercaptoacetic acid disks, and 18 (18%) were bla(IMP-1) or bla(VIM-2) allele positive by polymerase chain reaction (PCR). Among 100 imipenem-resistant strains, 32 were categorized into multi-drug resistant strains, in which 13 were positive for the metallo-beta-lactamase gene. Fifty-one strains (51%) among the 100 imipenem-resistant strains had elevated RND efflux pump activity against levofloxacin. But only 6 of 51 strains were classified as multi-drug resistant strains. The pulsed field gel electrophoresis analysis of the Spe I-digested DNA from the 100 isolates suggested not only clonal spread but spread of heterogeneous clones started to contribute to the prevalence of metallo-beta-lactamase producing P. aeruginosa strains in Japanese hospitals.  相似文献   
124.
The functional importance of sex steroid hormones (testosterone and estrogens), derived from extragonadal tissues, has recently gained significant appreciation. Circulating dehydroepiandrosterone (DHEA) is peripherally taken up and converted to testosterone by 3beta-hydroxysteroid dehydrogenase (HSD) and 17beta-HSD, and testosterone in turn is irreversibly converted to estrogens by aromatase cytochrome P-450 (P450arom). Although sex steroid hormones have been implicated in skeletal muscle regulation and adaptation, it is unclear whether skeletal muscles have a local steroidogenic enzymatic machinery capable of metabolizing circulating DHEA. Thus, here, we investigate whether the three key steroidogenic enzymes (3beta-HSD, 17beta-HSD, and P450arom) are present in the skeletal muscle and are capable of generating sex steroid hormones. Consistent with our hypothesis, the present study demonstrates mRNA and protein expression of these enzymes in the skeletal muscle cells of rats both in vivo and in culture (in vitro). Importantly, we also show an intracellular formation of testosterone and estradiol from DHEA or testosterone in cultured muscle cells in a dose-dependent manner. These findings are novel and important in that they provide the first evidence showing that skeletal muscles are capable of locally synthesizing sex steroid hormones from circulating DHEA or testosterone.  相似文献   
125.
126.
127.
Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases.  相似文献   
128.
Gonadotropin-releasing hormone (GnRH) is a neuroendocrine peptide that plays a central role in the vertebrate hypothalamo-pituitary axis. The roles of GnRH in the control of vertebrate reproductive functions have been established, while its non-reproductive function has been suggested but less well understood. Here we show that the tunicate Ciona intestinalis has in its non-reproductive larval stage a prominent GnRH system spanning the entire length of the nervous system. Tunicate GnRH receptors are phylogenetically closest to vertebrate GnRH receptors, yet functional analysis of the receptors revealed that these simple chordates have evolved a unique GnRH system with multiple ligands and receptor heterodimerization enabling complex regulation. One of the gnrh genes is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord of vertebrates. Correspondingly, GnRH receptor genes were found to be expressed in the tail muscle and notochord of embryos, both of which are phylotypic axial structures along the nerve cord. Our findings suggest a novel non-reproductive role of GnRH in tunicates. Furthermore, we present evidence that GnRH-producing cells are present in the hindbrain and spinal cord of the medaka, Oryzias latipes, thereby suggesting the deep evolutionary origin of a non-reproductive GnRH system in chordates.  相似文献   
129.
Hepatocellular carcinoma is the third leading cause of cancer mortality worldwide, but the molecular mechanisms in tumorigenesis remain largely unknown. Previously, a DEAD-box protein DDX20, a component of microRNA-containing ribonucleoprotein complexes, was identified as a liver tumor suppressor candidate in an oncogenomics-based in vivo RNAi screen. However, the molecular mechanisms were unknown. Here, we show that deficiency of DDX20 results in the enhancement of NF-κB activity, a crucial intracellular signaling pathway closely linked with hepatocarcinogenesis. While DDX20 normally suppresses NF-κB activity by regulating NF-κB-suppressing miRNA-140 function, this suppressive effect was lost in DDX20-deficient cells. The impairment of miRNA function due to DDX20 deficiency appears to be miRNA species-specific at the point of loading miRNAs into the RNA-induced silencing complex. These results indicate that DDX20 deficiency enhances NF-κB activity by impairing the NF-κB-suppressive action of microRNAs, and suggest that dysregulation of the microRNA machinery components may also be involved in pathogenesis in various human diseases.  相似文献   
130.
Autophagy is an essential process for both the maintenance and the survival of cells, with homeostatic low levels of autophagy being critical for intracellular organelles and proteins. In insulin resistant adipocytes, various dysfunctional/damaged molecules, organelles, proteins, and end-products accumulate. However, the role of autophagy (in particular, whether autophagy is activated or not) is poorly understood. In this study we found that in adipose tissue of insulin resistant mice and hypertrophic 3T3-L1 adipocytes autophagy was suppressed. Also in hypertrophic adipocytes, autophagy-related gene expression, such as LAMP1, LAMP2, and Atg5 was reduced, whereas gene expression in the inflammatory-related genes, such as MCP-1, IL-6, and IL-1β was increased. To find out whether suppressed autophagy was linked to inflammation we used the autophagy inhibitor, 3-methyladenine, to inhibit autophagy. Our results suggest that such inhibition leads to an increase in inflammatory gene expression and causes endoplasmic reticulum (ER) stress (which can be attenuated by treatment with the ER stress inhibitor, Tauroursodeoxycholic Acid). Conversely, the levels of inflammatory gene expression were reduced by the activation of autophagy or by the inhibition of ER stress. The results indicate that the suppression of autophagy increases inflammatory responses via ER stress, and also defines a novel role of autophagy as an important regulator of adipocyte inflammation in systemic insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号