首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3050篇
  免费   122篇
  国内免费   2篇
  2023年   6篇
  2022年   18篇
  2021年   44篇
  2020年   29篇
  2019年   36篇
  2018年   60篇
  2017年   46篇
  2016年   49篇
  2015年   127篇
  2014年   137篇
  2013年   229篇
  2012年   208篇
  2011年   238篇
  2010年   118篇
  2009年   128篇
  2008年   198篇
  2007年   183篇
  2006年   156篇
  2005年   187篇
  2004年   193篇
  2003年   166篇
  2002年   155篇
  2001年   23篇
  2000年   19篇
  1999年   27篇
  1998年   45篇
  1997年   42篇
  1996年   24篇
  1995年   25篇
  1994年   24篇
  1993年   19篇
  1992年   21篇
  1991年   18篇
  1990年   16篇
  1989年   22篇
  1988年   6篇
  1987年   24篇
  1986年   8篇
  1985年   9篇
  1984年   13篇
  1983年   10篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1979年   6篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   5篇
排序方式: 共有3174条查询结果,搜索用时 218 毫秒
81.
There are two contradictory aspects of the adaptive process in evolution. The first is that species must optimally increase their own fitness in a given environment. The second is that species must maintain their variation to be ready to respond to changing environments. In a strict sense, these two aspects might consider to be mutually exclusive. If species are optimally adapted, then the variation in the species that is suboptimal decreases and vice versa. To resolve this dilemma, species must find a balance between optimal adaptation and robust adaptation. Finding the balance between these processes requires both the local and global complete, static information. However, the balance between the processes must be dynamic. In this study, we propose a model that illustrates dynamic negotiation between the global and local information using lattice theory. The dynamic negotiation between these two levels results in an overestimate of fitness for each species. The overestimation of fitness in our model represents the multiplicity of fitness which is sometimes discussed as the exaptation. We show that species in our model demonstrate the power law of the lifespan distribution and 1/f fluctuation for the adaptive process. Our model allows for a balance between optimal adaptation and robust adaptation without any arbitrary parameters.  相似文献   
82.
Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood–brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.  相似文献   
83.
In general, transferases undergo large structural changes and sequester substrate molecules, to shield them from water. By contrast, hydrolases exhibit only small structural changes, and expose substrate molecules to water. However, some hydrolases deeply bury their substrates within the proteins. To clarify the relationship between substrate‐shielding and enzymatic functions, we investigated 70 representative hydrolase structures, and examined the relative accessible surface areas of their substrates. As compared to the hydrolases employing the single displacement reaction, the hydrolases employing the double displacement reaction bury the substrate within the proteins. The exo hydrolases display significantly more substrate‐shielding from water than the endo hydrolases. It suggests that the substrate‐shielding is related to the chemical reaction mechanism of the hydrolases and the substrate specificity. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   
84.
We identified a new subgroup of koala retrovirus (KoRV), named KoRV-J, which utilizes thiamine transport protein 1 as a receptor instead of the Pit-1 receptor used by KoRV (KoRV-A). By subgroup-specific PCR, KoRV-J and KoRV-A were detected in 67.5 and 100% of koalas originating from koalas from northern Australia, respectively. Altogether, our results indicate that the invasion of the koala population by KoRV-J may have occurred more recently than invasion by KoRV-A.  相似文献   
85.
Filaggrin protein is synthesized in the stratum granulosum of the skin and contributes to the formation of the human skin barrier. Profilaggrin is cleaved by proteolytic enzymes and converted to functional filaggrin, but its processing mechanism remains not fully elucidated. Kallikrein-related peptidase 5 (KLK5) is a major serine protease found in the skin, which is secreted from lamellar granules following its expression in the stratum granulosum and activated in the extracellular space of the stratum corneum. Here, we searched for profilaggrin-processing protease(s) by partial purification of epidermal extracts and found KLK5 as a possible candidate. We used high performance liquid chromatography coupled with electrospray tandem mass spectrometry to show that KLK5 cleaves profilaggrin. Furthermore, based on a proximity ligation assay, immunohistochemistry, and immunoelectron microscopy analysis, we reveal that KLK5 and profilaggrin co-localize in the stratum granulosum in human epidermis. KLK5 knockdown in normal cultured human epidermal keratinocytes resulted in higher levels of profilaggrin, indicating that KLK5 potentially functions in profilaggrin cleavage.  相似文献   
86.
Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability. Transition temperature of thermal unfolding (Tm) of each protein was elevated by the addition of cello-, laminari-, chitin-, or chitosan-hexamer (GlcN)6. The Tm elevation (ΔTm) in DD1 was the highest (10.3 °C) upon the addition of (GlcN)6 and was markedly higher than that in DD2 (1.0 °C). A synergistic effect was observed (ΔTm = 13.6 °C), when (GlcN)6 was added to DD1+DD2. From isothermal titration calorimetry experiments, affinities to DD1 were not clearly dependent upon chain length of (GlcN)n; ΔGr° values were −7.8 (n = 6), −7.6 (n = 5), −7.6 (n = 4), −7.6 (n = 3), and −7.1 (n = 2) kcal/mol, and the value was not obtained for GlcN due to the lowest affinity. DD2 bound (GlcN)n with the lower affinities (ΔGr° = −5.0 (n = 3) ∼ −5.2 (n = 6) kcal/mol). Isothermal titration calorimetry profiles obtained for DD1+DD2 exhibited a better fit when the two-site model was used for analysis and provided greater affinities to (GlcN)6 for individual DD1 and DD2 sites (ΔGr° = −8.6 and −6.4 kcal/mol, respectively). From NMR titration experiments, (GlcN)n (n = 2∼6) were found to bind to loops extruded from the core β-sandwich of individual DD1 and DD2, and the interaction sites were similar to each other. Taken together, DD1+DD2 is specific to chitosan, and individual modules synergistically interact with at least two GlcN units, facilitating chitosan hydrolysis.  相似文献   
87.
88.
89.
Thermoplasma acidophilum is a thermo-acidophilic archaeon. We purified tRNALeu (UAG) from T. acidophilum using a solid-phase DNA probe method and determined the RNA sequence after determining via nucleoside analysis and m7G-specific aniline cleavage because it has been reported that T. acidophilum tRNA contains m7G, which is generally not found in archaeal tRNAs. RNA sequencing and liquid chromatography–mass spectrometry revealed that the m7G modification exists at a novel position 49. Furthermore, we found several distinct modifications, which have not previously been found in archaeal tRNA, such as 4-thiouridine9, archaeosine13 and 5-carbamoylmethyuridine34. The related tRNA modification enzymes and their genes are discussed.  相似文献   
90.
Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell–cell communications and host–microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号