首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   19篇
  444篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   2篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   3篇
  2015年   11篇
  2014年   14篇
  2013年   20篇
  2012年   24篇
  2011年   23篇
  2010年   9篇
  2009年   13篇
  2008年   34篇
  2007年   25篇
  2006年   31篇
  2005年   19篇
  2004年   22篇
  2003年   13篇
  2002年   20篇
  2001年   13篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   9篇
  1993年   3篇
  1992年   5篇
  1991年   7篇
  1990年   13篇
  1989年   13篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1978年   4篇
  1974年   2篇
  1973年   1篇
  1965年   1篇
排序方式: 共有444条查询结果,搜索用时 15 毫秒
81.
Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferation and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-Rβ or Akt, it did inhibit the phosphorylation of Erk1/2 and PLCγ1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G0/G1 phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLCγ inhibitor, increased the proportion of cells in the G0/G1 phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G0/G1 phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.  相似文献   
82.
A hypomorphic mutation of the gene encoding zeta-associated protein-70 (ZAP-70), a signaling molecule in T cells, produces autoimmune arthritis in mice under a microbially conventional condition but not in a clean environment. The genetic anomaly alters thymic selection of self-reactive T cells as well as natural regulatory T cells and their respective functions. Highly self-reactive polyclonal T cells, including arthritogenic ones, thus produced by the thymus strongly recognize self-antigens presented by antigen-presenting cells, stimulate them to up-regulate co-stimulatory molecules and secrete cytokines that drive na?ve self-reactive T cells to differentiate into autoimmune effector Th17 cells. Administration of microbial products and activation of complement can facilitate the differentiation, evoking clinically overt arthritis in a microbially clean environment. Furthermore, mutation-dependent graded attenuation of T cell receptor signaling alters disease phenotypes and the dependency of disease occurrence on the environment. These findings provide a model of how genetic and environmental factors, in association, cause autoimmune diseases such as rheumatoid arthritis.  相似文献   
83.
The skin is an immune organ that contains innate and acquired immune systems and thus is able to respond to exogenous stimuli producing large amount of proinflammatory cytokines including IL-1 and IL-1 family members. The role of the epidermal IL-1 is not limited to initiation of local inflammatory responses, but also to induction of systemic inflammation. However, association of persistent release of IL-1 family members from severe skin inflammatory diseases such as psoriasis, epidermolysis bullosa, atopic dermatitis, blistering diseases and desmoglein-1 deficiency syndrome with diseases in systemic organs have not been so far assessed. Here, we showed the occurrence of severe systemic cardiovascular diseases and metabolic abnormalities including aberrant vascular wall remodeling with aortic stenosis, cardiomegaly, impaired limb and tail circulation, fatty tissue loss and systemic amyloid deposition in multiple organs with liver and kidney dysfunction in mouse models with severe dermatitis caused by persistent release of IL-1s from the skin. These morbid conditions were ameliorated by simultaneous administration of anti-IL-1α and IL-1β antibodies. These findings may explain the morbid association of arteriosclerosis, heart involvement, amyloidosis and cachexia in severe systemic skin diseases and systemic autoinflammatory diseases, and support the value of anti-IL-1 therapy for systemic inflammatory diseases.  相似文献   
84.
Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.  相似文献   
85.
Integrins mediate leukocyte accumulation to the sites of inflammation, thereby enhancing their potential as an important therapeutic target for inflammatory disorders. Integrin activation triggered by inflammatory mediators or signaling pathway is a key step to initiate leukocyte migration to inflamed tissues; however, an appropriately regulated integrin deactivation is indispensable for maintaining productive leukocyte migration. While typical integrin antagonists that block integrin activation target the initiation of leukocyte migration, a novel class of experimental compounds has been designed to block integrin deactivation, thereby perturbing the progression of cell migration. Current review discusses the mechanisms by which integrin is activated and subsequently deactivated by focusing on its structure-function relationship.  相似文献   
86.
Atomic force microscopy (AFM) can measure the mechanical properties of plant tissue at the cellular level, but for in situ observations, the sample must be held in place on a rigid support and it is difficult to obtain accurate data for living plants without inhibiting their growth. To investigate the dynamics of root cell stiffness during seedling growth, we circumvented these problems by using an array of glass micropillars as a support to hold an Arabidopsis thaliana root for AFM measurements without inhibiting root growth. The root elongated in the gaps between the pillars and was supported by the pillars. The AFM cantilever could contact the root for repeated measurements over the course of root growth. The elasticity of the root epidermal cells was used as an index of the stiffness. By contrast, we were not able to reliably observe roots on a smooth glass substrate because it was difficult to retain contact between the root and the cantilever without the support of the pillars. Using adhesive to fix the root on the smooth glass plane overcame this issue, but prevented root growth. The glass micropillar support allowed reproducible measurement of the spatial and temporal changes in root cell elasticity, making it possible to perform detailed AFM observations of the dynamics of root cell stiffness.  相似文献   
87.
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase that plays a major role in developmental processes and metabolism. The dysregulation of FGFR1 through genetic aberrations leads to skeletal and metabolic diseases as well as cancer. For this reason, FGFR1 is a promising therapeutic target, yet a very challenging one due to potential on-target toxicity. More puzzling is that both agonistic and antagonistic FGFR1 antibodies are reported to exhibit similar toxicity profiles in vivo, namely weight loss. In this study, we aimed to assess and compare the mechanism of action of these molecules to better understand this apparent contradiction. By systematically comparing the binding of these antibodies and the activation or the inhibition of the major FGFR1 signaling events, we demonstrated that the molecules displayed similar properties and can behave either as an agonist or antagonist depending on the presence or the absence of the endogenous ligand. We further demonstrated that these findings translated in xenografts mice models. In addition, using time-resolved FRET and mass spectrometry analysis, we showed a functionally distinct FGFR1 active conformation in the presence of an antibody that preferentially activates the FGFR substrate 2 (FRS2)-dependent signaling pathway, demonstrating that modulating the geometry of a FGFR1 dimer can effectively change the signaling outputs and ultimately the activity of the molecule in preclinical studies. Altogether, our results highlighted how bivalent antibodies can exhibit both agonistic and antagonistic activities and have implications for targeting other receptor tyrosine kinases with antibodies.  相似文献   
88.
The integrin lymphocyte function-associated antigen-1 (alpha(L)beta(2)), which is known for its ability to mediate firm adhesion and migration, can also contribute to tethering and rolling in shear flow. The alpha(L) I domain can be mutationally locked with disulfide bonds into two distinct conformations, open and closed, which have high and low affinity for the ligand intercellular adhesion molecule 1 (ICAM-1), respectively. The wild type I domain exists primarily in the lower energy closed conformation. We have measured for the first time the effect of conformational change on adhesive behavior in shear flow. We show that wild type and locked open I domains, expressed in alpha(L)beta(2) heterodimers or as isolated domains on the cell surface, mediate rolling adhesion and firm adhesion, respectively. alpha(L)beta(2) is thus poised for the conversion of rolling to firm adhesion upon integrin activation in vivo. Isolated I domains are surprisingly more effective than alpha(L)beta(2) in interactions in shear flow, which may in part be a consequence of the presence of alpha(L)beta(2) in a bent conformation. Furthermore, the force exerted on the C-terminal alpha-helix appears to stabilize the open conformation of the wild type isolated I domain and contribute to its robustness in supporting rolling. An allosteric small molecule antagonist of alpha(L)beta(2) inhibits both rolling adhesion and firm adhesion, which has important implications for its mode of action in vivo.  相似文献   
89.
BACKGROUND: Previous studies have shown that incubation of balloon-injured rat carotid arteries with adenoviral vectors encoding the carboxyl terminus of the beta-adrenergic receptor kinase (Ad2/betaARKct) for 30 min reduces neointima formation. However, it is unclear whether this beneficial effect of betaARKct could be achieved using a catheter-based vector delivery system and whether the observed inhibition of neointima formation translated into a reduction of vessel stenosis. METHODS: In this study, Ad2/betaARKct was infused into the balloon-injured site of rabbit iliac arteries using a porous infusion catheter over 2 min. Twenty-eight days after gene transfer, angiographic and histological assessments were performed. RESULTS: Angiographic and histological assessments indicate significant (p < 0.05) inhibition of iliac artery neointima formation and lumen stenosis by Ad2/betaARKct. Our studies demonstrate that an inhibitory effect of Ad2/betaARKct on neointima formation is achievable using a catheter-based vector delivery system and that the inhibition of neointima formation translates into a gain in the vessel minimal luminal diameter. The extent of inhibition (35%) was comparable to that observed with adenoviral-mediated expression of thymidine kinase plus ganciclovir treatment, a cytotoxic gene therapy approach for restenosis. CONCLUSIONS: These results suggest that adenoviral-mediated gene transfer of betaARKct is a clinically viable cytostatic gene therapy strategy for the treatment of restenosis.  相似文献   
90.
K Hirata  H Akita  M Yokoyama 《FEBS letters》1991,287(1-2):181-184
Vascular endothelial cells, in response to various neurohumoral and physical stimuli, produce an endothelium-derived relaxing factor, a substance which regulates vascular tone. We have demonstrated that oxidized low density lipoprotein (LDL) inhibits endothelium-dependent relaxation. We studied the effect of oxidized LDL on inositol phosphates formation stimulated with bradykinin (BK) in cultured bovine aortic endothelial cells. BK elicited a rapid generation of inositol phosphates from inositol phospholipids. Accumulation of inositol 1,4,5-trisphosphate (IP3) stimulated with BK (0.1 microM) was markedly inhibited by oxidized LDL. However, native LDL had little effect on BK-induced accumulation of IP3. From these results, oxidized LDL inhibits receptor-mediated phosphoinositides hydrolysis and modulates the endothelial function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号