首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2060篇
  免费   109篇
  国内免费   2篇
  2022年   11篇
  2021年   21篇
  2020年   12篇
  2019年   11篇
  2018年   15篇
  2017年   10篇
  2016年   29篇
  2015年   45篇
  2014年   57篇
  2013年   175篇
  2012年   95篇
  2011年   80篇
  2010年   55篇
  2009年   48篇
  2008年   85篇
  2007年   107篇
  2006年   92篇
  2005年   85篇
  2004年   90篇
  2003年   101篇
  2002年   79篇
  2001年   58篇
  2000年   83篇
  1999年   65篇
  1998年   26篇
  1997年   17篇
  1996年   16篇
  1995年   18篇
  1994年   12篇
  1993年   17篇
  1992年   46篇
  1991年   44篇
  1990年   44篇
  1989年   54篇
  1988年   39篇
  1987年   47篇
  1986年   26篇
  1985年   32篇
  1984年   16篇
  1983年   14篇
  1982年   22篇
  1981年   11篇
  1979年   22篇
  1978年   15篇
  1977年   18篇
  1976年   17篇
  1975年   15篇
  1974年   9篇
  1971年   10篇
  1969年   8篇
排序方式: 共有2171条查询结果,搜索用时 15 毫秒
121.
122.
Gliclazide, a second-generation sulfonylurea, has anti-oxidant properties as well as hypoglycemic activities. In the present study, we investigated whether gliclazide affected proliferation and/or differentiation of HW white and HB2 brown adipocyte cell lines. Gliclazide inhibited proliferation of HW and HB2 cells in the medium containing fetal calf serum or epidermal growth factor (EGF). Gliclazide inhibited phosphorylation of EGF receptor and of extracellular signal-regulated kinase (ERK) 1/2 stimulated by EGF. Gliclazide increased lipid accumulation and peroxisome proliferator-activated receptor gamma (PPARgamma) expression in the early stage of differentiation of adipocytes. A K(ATP) channel activator, diazoxide, did not inhibit the increase of lipid accumulation by gliclazide. Furthermore, gliclazide inhibited the DNA-binding activity of PPARgamma in mature adipocytes. On the other hand, glibenclamide, other sulfonylurea, did not show these effects. These results indicate gliclazide inhibits proliferation and stimulates differentiation of adipocytes via down-regulation of the EGFR signalling. Gliclazide may have preventive and therapeutic effects on obesity, as well as on type 2 diabetes.  相似文献   
123.
This study aimed to determine the accuracy of segmental body composition variables estimated by single-frequency BIA with 8-point contact electrodes (SF-BIA8), compared with dual-energy X-ray absorptiometry (DXA). Subjects were 72 obese Japanese adults (43 males and 29 females) aged 30 to 66 years. Segmental body composition variables (fat free mass: FFM, fat mass: FM, and percent fat mass: %FAT) were measured by these techniques. The correlations between impedance values and FFM measured by DXA were calculated. To examine the consistency in predicted values (SF-BIA8) with the reference (DXA), significant mean differences were tested by t-test and the degree of the difference was assessed by effect size. Correlations between the reference and predicted values were calculated. Additionally, the standard error of estimation (SEE) when estimating the reference from the predictor and the relative value of the SEE to the mean value of the DXA measurement (%SEE) were calculated. Systematic error was examined by Bland-Altman plots. High correlations were found between impedance and FFM measured by SF-BIA8. FFM in the extremities showed high correlations with the reference values, but systematic error was found. SF-BIA8 tended to overestimate FFM in the trunk. The consistencies in %FAT and FM with the reference value are inferior to those for FFM, and SEE values in %FAT and FM were greater than those for FFM. The accuracy of the estimated values in the trunk (FFM, %FAT, and FM) are inferior to those of the total body and extremities.  相似文献   
124.
The monomeric chlorophyll, ChlD1, which is located between the PD1PD2 chlorophyll pair and the pheophytin, PheoD1, is the longest wavelength chlorophyll in the heart of Photosystem II and is thought to be the primary electron donor. Its central Mg2+ is liganded to a water molecule that is H-bonded to D1/T179. Here, two site-directed mutants, D1/T179H and D1/T179V, were made in the thermophilic cyanobacterium, Thermosynechococcus elongatus, and characterized by a range of biophysical techniques. The Mn4CaO5 cluster in the water-splitting site is fully active in both mutants. Changes in thermoluminescence indicate that i) radiative recombination occurs via the repopulation of *ChlD1 itself; ii) non-radiative charge recombination reactions appeared to be faster in the T179H-PSII; and iii) the properties of PD1PD2 were unaffected by this mutation, and consequently iv) the immediate precursor state of the radiative excited state is the ChlD1+PheoD1? radical pair. Chlorophyll bleaching due to high intensity illumination correlated with the amount of 1O2 generated. Comparison of the bleaching spectra with the electrochromic shifts attributed to ChlD1 upon QA? formation, indicates that in the T179H-PSII and in the WT*3-PSII, the ChlD1 itself is the chlorophyll that is first damaged by 1O2, whereas in the T179V-PSII a more red chlorophyll is damaged, the identity of which is discussed. Thus, ChlD1 appears to be one of the primary damage site in recombination-mediated photoinhibition. Finally, changes in the absorption of ChlD1 very likely contribute to the well-known electrochromic shifts observed at ~430?nm during the S-state cycle.  相似文献   
125.
Efficient light harvesting in a photosynthetic antenna system is disturbed by a ragged and fluctuating energy landscape of the antenna pigments in response to the conformation dynamics of the protein. This situation is especially pronounced in Photosystem I (PSI) containing red shifted chlorophylls (red Chls) with the excitation energy much lower than the primary donor. The present study was conducted to clarify light-harvesting dynamics of PSI isolated from Synechocystis sp. PCC6803 by using single-molecule spectroscopy at liquid?nitrogen temperatures. Fluorescence emission at around 720?nm from the red Chls in single PSI trimers was monitored at 80–100?K. Intermittent variations in the emission intensities, so-called blinking, were frequently observed. Its time scale lay in several tens of seconds. The blinking amplitude depended on the redox state of the phylloquinone (A1). Electrochromic shifts of Chls induced by the negative charge on A1 were calculated based on the X-ray crystallographic structure. A Chl molecule, Chl-A839 (numbering according to PDB 5OY0), bound near A1 was found to have a large electrochromic shift. This Chl has strong exciton coupling with neighboring Chl (A838) whose site energy was predicted to be determined by interaction with an arginine residue (ArgF84) [Adolphs et al., 2010]. A possible scenario of the blinking was proposed. Conformational fluctuations of ArgF84 seesaw the excitation-energy of Chl-A838, which perturbs the branching ratio of excitation-energy between the red Chl and the cationic form of P700 as a quencher. The electrochromic shift of Chl-A839 enhances the effect of the conformation dynamics of ArgF84.  相似文献   
126.
C3 photosynthesis is often limited by CO2 diffusivity or stomatal (gs) and mesophyll (gm) conductances. To characterize effects of stomatal closure induced by either high CO2 or abscisic acid (ABA) application on gm, we examined gs and gm in the wild type (Col‐0) and ost1 and slac1‐2 mutants of Arabidopsis thaliana grown at 390 or 780 μmol mol?1 CO2. Stomata of these mutants were reported to be insensitive to both high CO2 and ABA. When the ambient CO2 increased instantaneously, gm decreased in all these plants, whereas gs in ost1 and slac1‐2 was unchanged. Therefore, the decrease in gm in response to high CO2 occurred irrespective of the responses of gs. gm was mainly determined by the instantaneous CO2 concentration during the measurement and not markedly by the CO2 concentration during the growth. Exogenous application of ABA to Col‐0 caused the decrease in the intercellular CO2 concentration (Ci). With the decrease in Ci, gm did not increase but decreased, indicating that the response of gm to CO2 and that to ABA are differently regulated and that ABA content in the leaves plays an important role in the regulation of gm.  相似文献   
127.
Background and AimsMangrove plants are mostly found in tropical and sub-tropical tidal flats, and their limited distribution may be related to their responses to growth temperatures. However, the mechanisms underlying these responses have not been clarified. Here, we measured the dependencies of the growth parameters and respiration rates of leaves and roots on growth temperatures in typical mangrove species.MethodsWe grew two typical species of Indo-Pacific mangroves, Bruguiera gymnorrhiza and Rhizophora stylosa, at four different temperatures (15, 20, 25 and 30 °C) by irrigating with fresh water containing nutrients, and we measured growth parameters, chemical composition, and leaf and root O2 respiration rates. We then estimated the construction costs of leaves and roots and the respiration rates required for maintenance and growth.Key ResultsThe relative growth rates of both species increased with growth temperature due to changes in physiological parameters such as net assimilation rate and respiration rate rather than to changes in structural parameters such as leaf area ratio. Both species required a threshold temperature for growth (12.2 °C in B. gymnorrhiza and 18.1 °C in R. stylosa). At the low growth temperature, root nitrogen uptake rate was lower in R. stylosa than in B. gymnorrhiza, leading to a slower growth rate in R. stylosa. This indicates that R. stylosa is more sensitive than B. gymnorrhiza to low temperature.ConclusionsOur results suggest that the mangrove species require a certain warm temperature to ensure respiration rates sufficient for maintenance and growth, particularly in roots. The underground temperature probably limits their growth under the low-temperature condition. The lower sensitivity of B. gymnorrhiza to low temperature shows its potential to adapt to a wider habitat temperature range than R. stylosa. These growth and respiratory features may explain the distribution patterns of the two mangrove species.  相似文献   
128.
1. The effects of insulin, glucagon and dexamethasone on the amino acid consumption by primary cultures of rat hepatocytes were studied in a medium containing all essential amino acids or in those deficient in some essential or nonessential amino acids. 2. The cells which were cultured in a medium containing all the essential amino acids responded to insulin by enhancing the consumption of amino acids and augmenting protein synthesis. 3. However, the cells did not respond to insulin significantly when they were cultured in a medium deficient in lysine or some other essential amino acids. 4. The results suggest that some essential amino acid deficiency impairs the transmission of the signal of insulin to the site of the metabolic changes induced by the hormone.  相似文献   
129.
Neuronal nitric-oxide synthase (nNOS) is composed of a heme oxygenase domain and a flavin-bound reductase domain. Ca(2+)/calmodulin (CaM) is essential for interdomain electron transfer during catalysis, whereas the role of the catalytically important cofactor, tetrahydrobiopterin (H4B) remains elusive. The product NO appears to bind to the heme and works as a feedback inhibitor. The present study shows that the Fe(3+)-NO complex is reduced to the Fe(2+)-NO complex by NADPH in the presence of both l-Arg and H4B even in the absence of Ca(2+)/CaM. The complex could not be fully reduced in the absence of H4B under any circumstances. However, dihydrobiopterin and N(G)-hydroxy-l-Arg could be substituted for H4B and l-Arg, respectively. No direct correlation could be found between redox potentials of the nNOS heme and the observed reduction of the Fe(3+)-NO complex. Thus, our data indicate the importance of the pterin binding to the active site structure during the reduction of the NO-heme complex by NADPH during catalytic turnover.  相似文献   
130.
Shi H  Noguchi N  Xu Y  Niki E 《FEBS letters》1999,461(3):196-200
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号