首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3191篇
  免费   164篇
  3355篇
  2023年   10篇
  2022年   19篇
  2021年   43篇
  2020年   18篇
  2019年   34篇
  2018年   54篇
  2017年   28篇
  2016年   64篇
  2015年   98篇
  2014年   124篇
  2013年   209篇
  2012年   262篇
  2011年   223篇
  2010年   143篇
  2009年   125篇
  2008年   221篇
  2007年   220篇
  2006年   200篇
  2005年   188篇
  2004年   221篇
  2003年   185篇
  2002年   216篇
  2001年   22篇
  2000年   28篇
  1999年   29篇
  1998年   34篇
  1997年   37篇
  1996年   40篇
  1995年   32篇
  1994年   30篇
  1993年   26篇
  1992年   19篇
  1991年   23篇
  1990年   12篇
  1989年   13篇
  1988年   12篇
  1987年   13篇
  1986年   8篇
  1985年   4篇
  1984年   6篇
  1983年   10篇
  1982年   9篇
  1981年   10篇
  1980年   11篇
  1979年   6篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1970年   2篇
  1969年   2篇
排序方式: 共有3355条查询结果,搜索用时 15 毫秒
91.
92.
93.
We present the X-ray structure of the RuvA-RuvB complex, which plays a crucial role in ATP-dependent branch migration. Two RuvA tetramers form the symmetric and closed octameric shell, where four RuvA domain IIIs spring out in the two opposite directions to be individually caught by a single RuvB. The binding of domain III deforms the protruding beta hairpin in the N-terminal domain of RuvB and thereby appears to induce a functional and less symmetric RuvB hexameric ring. The model of the RuvA-RuvB junction DNA ternary complex, constructed by fitting the X-ray structure into the averaged electron microscopic images of the RuvA-RuvB junction, appears to be more compatible with the branch migration mode of a fixed RuvA-RuvB interaction than with a rotational interaction mode.  相似文献   
94.
Fukuyama-type congenital muscular dystrophy (FCMD) is a severe autosomal-recessive muscular dystrophy accompanied by brain malformation. Previously, we identified the gene responsible for FCMD through positional cloning. Here we report the isolation of its murine ortholog, Fcmd. The predicted amino acid sequence of murine fukutin protein encoded by Fcmd is 90% identical to that of its human counterpart. Radiation hybrid mapping localized the gene to 2.02 cR telomeric to D4Mit272 on chromosome 4. Northern blot analysis revealed ubiquitous expression of Fcmd in adult mouse tissues. Through in situ hybridization, we observed a wide distribution of Fcmd expression throughout embryonic development, most predominantly in the central and peripheral nervous systems. We also detected high Fcmd expression in the ventricular zone of proliferating neurons at 13.5 days post-coitum. Brain malformation in FCMD patients is thought to result from defective neuronal migration. Our data suggest that neuronally expressed Fcmd is likely to be important in the development of normal brain structure.  相似文献   
95.
The ubiquitin conjugation system regulates a wide variety of biological phenomena, including protein degradation and signal transduction, by regulating protein function via polyubiquitin conjugation in most cases. Several types of polyubiquitin chains exist in cells, and the type of polyubiquitin chain conjugated to a protein seems to determine how that protein is regulated. We identified a novel linear polyubiquitin chain and the ubiquitin-protein ligase complex that assembles it, designated LUBAC. Both were shown to have crucial roles in the canonical NFκB activation pathway. This year, three groups, including our laboratory, identified SHARPIN as a new subunit of LUBAC. Of great interest, Sharpin was identified as a causative gene of chronic proliferative dermatitis in mice (cpdm), which is characterized by numerous inflammatory symptoms including chronic dermatitis, arthritis and immune disorders. Deletion of SHARPIN drastically reduces the amount of LUBAC and attenuates signal-induced NFκB activation. The pleomorphic symptoms of cpdm mice suggest that LUBAC-mediated NFκB activation may play critical roles in mammals and be involved in various disorders. A forward look into the linear polyubiquitin research is also discussed.Key words: ubiquitin, linear ubiquitination, NFκB, LUBAC, SHARPIN, cpdm, chronic dermatitis, TNFα  相似文献   
96.

Background

Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis.

Methods

For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed.

Results

A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients.

Conclusions

In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.
  相似文献   
97.
98.
99.
An ocular cysticercosis case of a nine-year-old Balinese girl in Indonesia is reported. She presented with redness and pain in the left eye and showed a cysticercus in the anterior chamber in December 2010. Morphological feature of the cysticercus removed from the anterior chamber indicated that it was an immature cysticercus of Taenia species with no hooklets. However, mitochondrial DNA analysis using a piece of histopathological specimen revealed it a cysticercus of Taenia solium Asian genotype. Serology by immunoblot and ELISA highly specific to cysticercosis was negative.  相似文献   
100.
Studies of meso-endoderm and neural induction and subsequent body plan formation have been analyzed using mainly amphibians as the experimental model. Xenopus is currently the predominant model, because it best enables molecular analysis of these induction processes. However, much of the embryological information on these inductions (e.g., those of the Spemann-Mangold organizer), and on the morphogenetic movements of inductively interacting tissues, derives from research on non-model amphibians, especially urodeles. Although the final body pattern is strongly conserved in vertebrates, and although many of the same developmental genes are expressed, it has become evident that there are individually diverse modes of morphogenesis and timing of developmental events. Whether or not this diversity represents essential differences in the early induction processes remains unclear. The aim of this review is to compare the gastrulation process, induction processes, and gene expressions between a urodele, mainly Cynops pyrrhogaster, and an anura, Xenopus laevis, thereby to clarify conserved and diversified aspects. Cynops gastrulation differs significantly from that of Xenopus in that specification of the regions of the Xenopus dorsal marginal zone (DMZ) are specified before the onset of gastrulation, as marked by blastopore formation, whereas the equivalent state of specification does not occur in Cynops until the middle of gastrulation. Detailed comparison of the germ layer structure and morphogenetic movements during the pre-gastrula and gastrula stages shows that the entire gastrulation process should be divided into two phases of notochord induction and neural induction. Cynops undergoes these processes sequentially after the onset of gastrulation, whereas Xenopus undergoes notochord induction during a series of pre-gastrulation movements, and its traditionally defined period of gastrulation only includes the neural induction phase. Comparing the structure, fate, function and state of commitment of each domain of the DMZ of Xenopus and Cynops has revealed that the true form of the Spemann-Mangold organizer is suprablastoporal gsc-expressing endoderm that has notochord-inducing activity. Gsc-expressing deep endoderm and/or superficial endoderm in Xenopus is involved in inducing notochord during pre-gastrulation morphogenesis, rather than both gsc- and bra-expressing tissues being induced at the same time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号