首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   3篇
  232篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   14篇
  2011年   18篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   15篇
  2006年   9篇
  2005年   11篇
  2004年   12篇
  2003年   14篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1984年   4篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1975年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
51.
52.

Background

The strong familiality of living to extreme ages suggests that human longevity is genetically regulated. The majority of genes found thus far to be associated with longevity primarily function in lipoprotein metabolism and insulin/IGF-1 signaling. There are likely many more genetic modifiers of human longevity that remain to be discovered.

Methodology/Principal Findings

Here, we first show that 18 single nucleotide polymorphisms (SNPs) in the RNA editing genes ADARB1 and ADARB2 are associated with extreme old age in a U.S. based study of centenarians, the New England Centenarian Study. We describe replications of these findings in three independently conducted centenarian studies with different genetic backgrounds (Italian, Ashkenazi Jewish and Japanese) that collectively support an association of ADARB1 and ADARB2 with longevity. Some SNPs in ADARB2 replicate consistently in the four populations and suggest a strong effect that is independent of the different genetic backgrounds and environments. To evaluate the functional association of these genes with lifespan, we demonstrate that inactivation of their orthologues adr-1 and adr-2 in C. elegans reduces median survival by 50%. We further demonstrate that inactivation of the argonaute gene, rde-1, a critical regulator of RNA interference, completely restores lifespan to normal levels in the context of adr-1 and adr-2 loss of function.

Conclusions/Significance

Our results suggest that RNA editors may be an important regulator of aging in humans and that, when evaluated in C. elegans, this pathway may interact with the RNA interference machinery to regulate lifespan.  相似文献   
53.
Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton.  相似文献   
54.
Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade extracellular matrix components. Membrane-type 5 MMP (MT5-MMP/MMP-24) was identified as neuron-specific, and is believed to contribute to neuronal circuit formation and plasticity. To elucidate its function in vivo, we have generated mice lacking MT5-MMP by gene targeting. MT5-MMP-deficient mice were born without obvious morphological abnormalities. No apparent histological defects were observed in the nervous system either. However, MT5-MMP-deficient mice did not develop neuropathic pain with mechanical allodynia after sciatic nerve injury, though responses to acute noxious stimuli were normal. Neuropathic pain induced by peripheral nerve lesions is known to accompany structural reorganization of the nervous system. Intraneural injection of cholera toxin B subunit, a transganglionic tracer, into the injured sciatic nerve of wild-type mice revealed that the myelinated Abeta-fiber primary afferents sprouted from laminae III-VI of the dorsal horn of the spinal cord and invaded lamina II. However, no such sprouting and invasion of Abeta-fibers were observed in MT5-MMP-deficient mice. These findings suggest that MT5-MMP is essential for the development of mechanical allodynia and plays an important role in neuronal plasticity in this mouse model.  相似文献   
55.
Acetic acid treatment has been frequently used to remove cellular contaminants from plant chromosome samples for structural analyses by scanning electron microscopy and atomic force microscopy (AFM). We evaluated the effects of various concentrations of acetic acid treatments on barley chromosome structures by using AFM. The long-term 45% acetic acid treatment significantly damaged the chromosome structures, although the treatment effectively removed the cellular contaminants. On the other hand, the treatment with 15% acetic acid could not obtain sufficiently clean chromosome samples and the chromosome surface structures could not be observed. In contrast, we obtained clean chromosome preparation without severe damage by using an intermediate concentration (30%) of acetic acid treatment. In the centromeric region, we could observe fiber structures with a width of 100 nm, which were composed of ca. 50-nm granules and aligned to the axes of chromosomes. Thus, AFM analysis of chromosomes appropriately treated with acetic acid will provide important insights into the organization of higher-order structures of plant chromosomes.  相似文献   
56.
Urinary estrone conjugates (E1C), pregnanediol-3-glucuronide (PdG), and follicle-stimulating hormone (FSH) were determined by enzyme immunoassays (EIAs) during the normal menstrual cycle in the orangutan, gorilla, chimpanzee, and bonobo. Furthermore, the data were compared to those levels in the human and long-tailed macaque. The results showed a typical preovulatory E1C surge and postovulatory increase in PdG in all species. The pattern of E1C during the menstrual cycle in the great apes more closely resembled the human than do the long-tailed macaque. A major difference of E1C pattern between these species appeared in the luteal phase. In the great apes and the human, E1C exhibited two peaks, the first peak detected at approximately mid cycle and the second peak detected during the luteal phase. On the other hand, in the long-tailed macaque, increase of E1C in the luteal phase was small or nonexistent. The gorilla, chimpanzee, and bonobo exhibited similar PdG trends. The orangutan excreted one tenth less PdG than these species during the luteal phase. The long-tailed macaque also excreted low levels of PdG. The patterns of FSH in orangutan, chimpanzee, bonobo and long-tailed macaque showed a marked mid-cycle rise and an early follicular phase rise, similar to those in the human. Comparing similar taxa, a large difference was found in FSH of gorilla; there were three peaks during the menstrual cycle. Thus, there is considerable species variation in the excretion of these hormones during the menstrual cycle and comparative studies could be approached with a single method. The methods and baseline data presented here provide the basis for a practical approach to evaluation and monitoring of ovarian events in the female great apes. Electronic Publication  相似文献   
57.
58.
59.
MT1-MMP is a potent invasion-promoting membrane protease employed by aggressive cancer cells. MT1-MMP localizes preferentially at membrane protrusions called invadopodia where it plays a central role in degradation of the surrounding extracellular matrix (ECM). Previous reports suggested a role for a continuous supply of MT1-MMP in ECM degradation. However, the turnover rate of MT1-MMP and the extent to which the turnover contributes to the ECM degradation at invadopodia have not been clarified. To approach this problem, we first performed FRAP (Fluorescence Recovery after Photobleaching) experiments with fluorescence-tagged MT1-MMP focusing on a single invadopodium and found very rapid recovery in FRAP signals, approximated by double-exponential plots with time constants of 26 s and 259 s. The recovery depended primarily on vesicle transport, but negligibly on lateral diffusion. Next we constructed a computational model employing the observed kinetics of the FRAP experiments. The simulations successfully reproduced our FRAP experiments. Next we inhibited the vesicle transport both experimentally, and in simulation. Addition of drugs inhibiting vesicle transport blocked ECM degradation experimentally, and the simulation showed no appreciable ECM degradation under conditions inhibiting vesicle transport. In addition, the degree of the reduction in ECM degradation depended on the degree of the reduction in the MT1-MMP turnover. Thus, our experiments and simulations have established the role of the rapid turnover of MT1-MMP in ECM degradation at invadopodia. Furthermore, our simulations suggested synergetic contributions of proteolytic activity and the MT1-MMP turnover to ECM degradation because there was a nonlinear and marked reduction in ECM degradation if both factors were reduced simultaneously. Thus our computational model provides a new in silico tool to design and evaluate intervention strategies in cancer cell invasion.  相似文献   
60.
A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1), tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT) was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs) and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1) and glucose transporter 4 (GLUT4) in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results indicate that irbesartan improves stress-induced adipose tissue inflammation and insulin resistance. Our results suggests that irbesartan treatment exerts additive benefits for glucose metabolism in hypertensive patients with mental stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号