首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   30篇
  2023年   2篇
  2022年   7篇
  2021年   12篇
  2020年   10篇
  2019年   23篇
  2018年   31篇
  2017年   9篇
  2016年   11篇
  2015年   8篇
  2014年   10篇
  2013年   8篇
  2012年   14篇
  2011年   18篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2003年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
61.
Metabolic syndrome is known as a frequent precursor of type 2 diabetes mellitus (T2D). This disease could affect 8% of the people worldwide. Given that pancreatic β-cell dysfunction and loss have central roles in the initiation and progression of the disease, the understanding of cellular and molecular pathways associated with pancreatic β-cell dysfunction can provide more information about the underlying pathways involved in T2D. Multiple lines evidence indicated that oxidative stress, microRNA, and long noncoding RNA play significant roles in various steps of diseases. Oxidative stress is one of the important factors involved in T2D pathogenesis. This could affect the function and survival of the β cell via activation or inhibition of several processes and targets, such as receptor-signal transduction, enzyme activity, gene expression, ion channel transport, and apoptosis. Besides oxidative stress, microRNAs and noncoding RNAs have emerged as epigenetic regulators that could affect pancreatic β-cell dysfunction. These molecules exert their effects via targeting a variety of cellular and molecular pathways involved in T2D pathogenesis. Here, we summarized the molecular aspects of pancreatic β-cell dysfunction. Moreover, we highlighted the roles of oxidative stress, microRNAs, and noncoding RNAs in pancreatic β-cell dysfunction.  相似文献   
62.
Although remarkable results have been attained by adoptively transferring T cells expressing fully murine and/or humanized anti-CD19 chimeric antigen receptors (CARs) to treat B cell malignancies, evidence of human anti-mouse immune responses against CARs provides a rationale for the development of less immunogenic CARs. By developing a fully human CAR (huCAR), these human anti-mouse immune responses are likely eliminated. This, perhaps, not only increases the persistence of anti-CD19 CAR T cells—thereby reducing the risk of tumor relapse—but also facilitates administration of multiple, temporally separated doses of CAR T cells to the same recipient. To these ends, we have designed and constructed a second-generation fully human anti-CD19 CAR (or huCAR19) containing a fully human single-chain variable fragment (ScFv) fused with a CD8a hinge, a 4-1BB transmembrane domain and intracellular T cell signaling domains of 4-1BB and CD3z. T cells expressing this CAR specifically recognized and lysed CD19+ target cells produced cytokines and proliferated in vitro. Moreover, cell volume data revealed that our huCAR construct cannot induce antigen-independent tonic signaling in the absence of cognate antigen. Considering our results, our anti-CD19 huCAR may overcome issues of transgene immunogenicity that plague trials utilizing CARs containing mouse-derived ScFvs. These results suggest that this huCAR19 be safely and effectively applied for adaptive T cell immunotherapy in clinical practice.  相似文献   
63.
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.  相似文献   
64.
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.  相似文献   
65.
66.
Ice nucleation proteins (INP) are a major cause of frost damage in plants and crops. Here, an INP gene from Fusarium acuminatum was optimized, synthesized, expressed in E.coli and subsequently purified and characterized. The protein belongs to the second class of ice nucleation proteins with an optimum pH 5.5, relative activity and stability between pH 5 and 9.5 and up to 45 °C. The protein was fully active and stable in the presence of dimethyl sulfoxide (DMSO), dioxane, acetone and ethyl acetate. Moreover, it retained over 50 % of its original activity in the presence of polyvinyl alcohol. The 3D structure model of the INP-F indicated the protein had three distinct domains as exist in other ice nucleation proteins with some variations. Considering these promising results, INP-F could be a novel candidate for industrial applications.  相似文献   
67.
Interaction of ribavirin with CT-DNA was investigated by emission, absorption, circular dichroism, and viscosity studies to determine the binding mode and binding constant of this drug with DNA. The calculated binding constant, K(b), obtained from UV-vis absorption studies was 4.6 × 10(3) M(-1). In fluorimetric studies, the enthalpy (ΔH<0) and entropy (ΔS>0) of the reaction between ribavirin and CT-DNA showed a hydrophobic interaction. In addition, in the circular dichroism spectrum, the drug induces a B → A structural transition of CT-DNA. These results demonstrate that ribavirin interacts with CT-DNA via the groove binding mode. It was observed that the drug has ability to cleave supercoiled plasmid DNA.  相似文献   
68.
It is proposed that conformational changes induced in proteins by oxidation can lead to loss of activity or protein aggregation through exposure of hydrophobic residues and alteration in surface hydrophobicity. Because increased oxidative stress and protein aggregation are consistently observed in amyotrophic lateral sclerosis (ALS), we used a 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid (BisANS) photolabeling approach to monitor changes in protein unfolding in vivo in skeletal muscle proteins in ALS mice. We find two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), conformationally affected in the ALS G93A mouse model concordant with a 43% and 41% reduction in enzyme activity, respectively. This correlated with changes in conformation and activity that were detected in CK and GAPDH with in vitro oxidation. Interestingly, we found that GAPDH, but not CK, is conformationally and functionally affected in a longer-lived ALS model (H46R/H48Q), exhibiting a 22% reduction in enzyme activity. We proposed a reaction mechanism for BisANS with nucleophilic amino acids such as lysine, serine, threonine, and tyrosine, and BisANS was found to be primarily incorporated to lysine residues in GAPDH. We identified the specific BisANS incorporation sites on GAPDH in nontransgenic (NTg), G93A, and H46R/H48Q mice using liquid chromatography-tandem mass spectrometry analysis. Four BisANS-containing sites (K52, K104, K212, and K248) were found in NTg GAPDH, while three out of four of these sites were lost in either G93A or H46R/H48Q GAPDH. Conversely, eight new sites (K2, K63, K69, K114, K183, K251, S330, and K331) were found on GAPDH for G93A, including one common site (K114) for H46R/H48Q, which is not found on GAPDH from NTg mice. These data show that GAPDH is differentially affected structurally and functionally in vivo in accordance with the degree of oxidative stress associated with these two models of ALS.  相似文献   
69.
This study was designed to examine estrous response rates to the therapeutic treatment of clinical anestrus in high producing dairy cows and to identify the factors that could affect these rates. Cows with silent ovulation (Subestrus group), cystic ovarian disease (Cyst group) or ovarian hypofunction (OH group) were given specific treatment for their disorder. Data were derived from 1764 treatments in cows producing a mean of 45.4 kg of milk upon treatment including: 889 subestrous cows, 367 cystic cows and 508 cows with ovarian hypofunction. Cows showing estrus following treatment exhibited a similar pregnancy rate to cows attaining natural estrus used as reference: 33% (337/1006) and 35% (626/1796), respectively. No significant differences in pregnancy rates were observed among the Subestrus, Cyst and OH groups (34% (196/571), 34% (44/130), 32% (97/305), respectively. Based on the odds ratio, an estrous response for all groups was less likely to occur in cows that had suffered previous anestrus, compared to cows that were anestrous for the first time, whereas the likelihood of an estrous response increased in cows treated after 90 days in milk. Our results indicate that previous anestrus and a late stage of lactation can have a negative and positive effect, respectively, on the estrous response to the specific treatment of clinical anestrus shown by high producing dairy cows. Treatment targeted at each type of clinical anestrus can render similar pregnancy rates to those shown by cows in natural estrus.  相似文献   
70.
This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号