首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
  27篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2008年   4篇
  2007年   3篇
  2003年   1篇
  2002年   1篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.
A series of new ursolic and oleanolic acids derivatives was synthesized via ursolic or oleanolic acids, previously extracted from South American Ilex species. These new compounds were tested for in vitro antiparasitic activity on Leishmania amazonensis and Leishmania infantum strains. Some of these compounds showed activity against the promastigote forms of L. amazonensis or L. infantum, with IC(50) ranging from 5 to 12 microM. As expected, most of the compounds showed a significant level of cytotoxicity against monocytes (IC(50) = 2-50 microM). From a structure-activity relationships point of view, these pharmacological results enlightened mainly the importance of an acetylation at position 3 of the oleanolic acid skeleton in the activity against the L. amazonensis strain, and of a bis-(3-aminopropyl)piperazine moiety on the carboxylic function of ursolic acid against the L. infantum strain.  相似文献   
22.
An original series of 4-substituted pyrrolo[1,2-a]quinoxaline derivatives, new structural analogues of Galipea species quinoline alkaloids, was synthesized from various substituted 2-nitroanilines via multistep heterocyclizations and tested for in vitro antiparasitic activity upon Leishmania amazonensis and Leishmania infantum strains. Structure-activity relationships enlighten the importance of the 4-substituted alkenyl side chain on the pyrrolo[1,2-a]quinoxaline moiety to modulate the antileishmanial activity.  相似文献   
23.

Background

In addition to helminthic infections, elevated serum IgE levels were observed in many protozoal infections, while their contribution during immune response to these pathogens remained unclear. As IgE/antigen immune complexes (IgE-IC) bind to human cells through FcεRI or FcεRII/CD23 surface molecules, the present study aimed to identify which functional receptor may be involved in IgE-IC interaction with human macrophages, the major effector cell during parasite infection.

Methodology/Principal Findings

Human monocyte-derived macrophages were infected with Toxoplasma gondii before being incubated with IgE-IC. IgE receptors were then identified using appropriate blocking antibodies. The activation of cells and parasiticidal activity were evaluated by mediator quantification and direct counting of infected macrophages. RNAs were extracted and cell supernatants were also collected for their content in tumor necrosis factor (TNF)-α, interleukin-10 (IL-10) and nitrites. Sera from symptomatic infected patients were also tested for their content of IgE, IL-10 and nitrites, and compared to values found in healthy donors. Results showed that IgE-IC induced intracellular elimination of parasites by human macrophages. IgE-mediated effect was FcεRI-independent, but required cross-linking of surface FcεRII/CD23, cell activation and the generation of nitric oxide (NO). Although TNF-α was shown to be produced during cell activation, this cytokine had minor contribution in this phenomenon while endogenous and exogenous IL-10 down-regulated parasite killing. Inverse relationship was found between IL-10 and NO expression by infected human macrophages at both mRNA and mediator levels. The relationship between these in vitro data and in vivo levels of various factors in T. gondii infected patients supports the involvement of CD23 antigen and IL-10 expression in disease control.

Conclusion

Thus, IgE may be considered as immune mediator during antiprotozoal activity of human macrophages through its ability to trigger CD23 signaling. Increased cell activation by IgE-IC may also account for chronic inflammatory diseases observed in some patients.  相似文献   
24.
Human T cell agar colonies can be grown under PHA stimulation from either mature T cells or their E rosette-negative (E-), OKT3- peripheral blood and bone marrow precursors. Colonies comprise a majority of mature E+, OKT3+ cells and a minor (5 to 10%) population of immature E-, T3-, T8-, T4-, DR+, T10+, RFB1+ cells, which upon replating in subculture, can generate secondary colonies of OKT3+, E+, OKT4+, OKT8+ cells. Secondary colony formation can serve as a test for growth requirement of colony precursors, because it depends on the presence of both PHA and a colony-promoting activity (CPA) recovered in PHA-stimulated B + null or T + adherent cell supernatants. CPA production by B + null cells was not affected by their treatment with OKT3 or D66 (T11-like) monoclonal antibodies (MAB) + complement but was abolished by an anti-HLA-DR MAB + complement. However, B cells sorted by panning with the same anti-HLA-DR MAB did not release CPA, demonstrating the requirement of both B cells and null cells for CPA production. Neither IL 2 nor IL 1 could account for B + null cell-derived CPA.  相似文献   
25.
CD23 is a surface antigen expressed by a variety of human hematopoietic cells and shown to display multiple biological functions. In present work, we assayed CD23 expression by human bone marrow (BM) or by stromal cells derived from this tissue. While freshly isolated BM-cells showed low CD23 expression, a subset of long term BM-culture (LTBMC)-derived stromal cells expressed CD23 mRNA at high levels in their steady state and secreted soluble CD23 in their culture supernatants. To assay the role of CD23 in LTBMC, these cultures were initiated in the presence of neutralizing anti-CD23 mAb. A dramatic decrease in total numbers of hematopoietic cells and CFU-GM recovery was observed in these cultures as compared to controls. These data suggest a role of CD23 expression in stroma cell functions and further confirm the ability of this antigen to regulate human hematopoietic cell development.  相似文献   
26.
Reactive nitrogen intermediates are synthesized by activated macrophages. These molecules, and nitrous anhydride (N(2)O(3)) in particular, are known to be potent nitrosylating species. We investigated the role of macrophage-derived N(2)O(3) in extracellular nitrosylation. We used dilution experiments to demonstrate the intracellular production of N(2)O(3) and its export into the extracellular medium, with a rate constant k(ex) = 6.8 x 10(6) M s(-1). The kinetics of the competition between extracellular hydrolysis of N(2)O(3) and its reaction with added glutathione were also studied. We obtained a value of the rate constant k(GSH) for the latter reaction of 4.4 x 10(7) M(-1) s(-1), consistent with earlier determinations in cell-free systems. The implications of these results in human albumin nitrosylation were investigated. Nitrosylated albumin was detected in activated macrophages supernatants using an anti-NO-acetylated cysteine antibody. It was estimated that 10% of N(2)O(3) produced by activated cells participate in extracellular nitrosylation. N(2)O(3) thus appears to be a new effector molecule of the immune system, as an agent for the nitrosylation of albumin, the main nitric oxide carrier in vivo.  相似文献   
27.
Reactive nitrogen intermediates are synthesized by activated macrophages. These molecules, and nitrous anhydride (N2O3) in particular, are known to be potent nitrosylating species. We investigated the role of macrophage-derived N2O3 in extracellular nitrosylation. We used dilution experiments to demonstrate the intracellular production of N2O3 and its export into the extracellular medium, with a rate constant kex = 6.8 × 106 M s−1. The kinetics of the competition between extracellular hydrolysis of N2O3 and its reaction with added glutathione were also studied. We obtained a value of the rate constant kGSH for the latter reaction of 4.4 × 107 M−1 s−1, consistent with earlier determinations in cell-free systems. The implications of these results in human albumin nitrosylation were investigated. Nitrosylated albumin was detected in activated macrophages supernatants using an anti-NO-acetylated cysteine antibody. It was estimated that 10% of N2O3 produced by activated cells participate in extracellular nitrosylation. N2O3 thus appears to be a new effector molecule of the immune system, as an agent for the nitrosylation of albumin, the main nitric oxide carrier in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号