首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1792篇
  免费   398篇
  2016年   25篇
  2015年   45篇
  2014年   39篇
  2013年   59篇
  2012年   78篇
  2011年   86篇
  2010年   42篇
  2009年   34篇
  2008年   67篇
  2007年   77篇
  2006年   66篇
  2005年   50篇
  2004年   65篇
  2003年   76篇
  2002年   54篇
  2001年   85篇
  2000年   61篇
  1999年   65篇
  1998年   27篇
  1997年   23篇
  1996年   31篇
  1995年   23篇
  1994年   22篇
  1992年   71篇
  1991年   50篇
  1990年   50篇
  1989年   53篇
  1988年   48篇
  1987年   51篇
  1986年   40篇
  1985年   51篇
  1984年   37篇
  1983年   38篇
  1982年   24篇
  1981年   23篇
  1980年   16篇
  1979年   24篇
  1978年   29篇
  1977年   27篇
  1976年   16篇
  1975年   21篇
  1974年   31篇
  1973年   22篇
  1972年   20篇
  1971年   26篇
  1970年   25篇
  1969年   23篇
  1968年   24篇
  1967年   17篇
  1966年   19篇
排序方式: 共有2190条查询结果,搜索用时 15 毫秒
101.
Choleragen catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide; nicotinamide production was dramatically increased by L-arginine methyl ester and to a lesser extent by D- or L-arginine, but not by other basic amino acids. Guanidine was also effective. Nicotinamide formation in the presence of L-arginine methyl ester was greatest under conditions previously shown to accelerate the hydrolysis of NAD by choleragen (Moss, J., Manganiello, V. C., and Vaughan, M. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 4424-4427). After incubation of [adenine-U14C]NAD and L[3H]arginine with coleragen, a product was isolated by thin layer chromatography that contained adenine and arginine in a 1:1 ratio and has been tentatively identified as ADP-ribose-L-arginine. Parallel experiments with [carbonyl-14C]NAD have demonstrated that formation of the ADP-ribosyl-L-arginine derivative was associated with the production of [carbonyl-14C]nicotinamide. As guanidine itself was active and D- and L-arginine was equally effective in promoting nicotinamide production, whereas citrulline, which possesses a ureido rather than a guanidino function, was inactive, it seems probable that the guanidino group rather than the alpha-amino moiety participated in the linkage to ADP-ribose. Based on the assumption that the ADP-ribosylation of L-arginine by choleragen is a model for the NAD-dependent activation of adenylate cyclase by choleragen, it is proposed that the active A protomer of choleragen catalyzes the ADP-ribosylation of an arginine, or related amino acid residue in a protein, which is the cyclase itself or is critical to its activation by choleragen.  相似文献   
102.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
103.
The mechanical properties of the resting, whole semitendinosus muscle of the frog have been characterized as functions of both muscle length and temperature. Measurements were made of pseudorandom white noise (PRWN) displacements (less than 10 A/half-sarcomere) applied to the muscle and the force responses to these movements. Signal correlation techniques were then used to obtain the dynamic modulus function for the muscle in the frequency range 2.44-320 Hz. This function was represented by a series combination of a Voigt element and a time delay element for tension propagation along the muscle. A dynamic elastic modulus (E), coefficient of damping (B), and tension transmission velocity (V) were measured for resting muscle on the basis of this model. For each of these parameters, a marked variation with sarcomere length (s) was found. The mean values for E and B at LO (s=2.25 mum) were 1.84+/-0.24 X 10(5) N/m2 and 2.33+/-0.25 X 10(2) Ns/m2, respectively. Further, B demonstrated a negative temperature dependence, Q10=0.78 (P less than 0.05), in the range s=2.6-3.0 mum, while E was not significantly temperature dependent. The length-dependent variations of E and B are interpreted as deriving from both passive muscle elements and attached crossbridges. Velocity was calculated at a single displacing frequency for every experiment; the mean value at LO and all temperatures was v=11.7+/-0.6 m/s. Velocity was also calculated as a function of frequency within several experiments: the results indicate considerable variation of v with frequency.  相似文献   
104.
Tandem repeats within the inverted terminal repetition of vaccinia virus DNA   总被引:23,自引:0,他引:23  
R Wittek  B Moss 《Cell》1980,21(1):277-284
A tandemly repeated sequence within the genome of vaccinia virus is cut to fragments of approximately 70 bp by Hinf I, Taq I or Mbo II. The 70 bp repetition was localized within the much larger (10,300 bp) inverted terminal repetition by restriction analysis of cloned DNA fragments and by hybridization of the purified 70 bp repeat to vaccinia virus DNA restriction fragments. The molar abundance of the 70 bp fragment corresponds to a 30 fold repetition at each end of the genome. The repeating restriction endonuclease sites were mapped by agarose gel electrophoresis of partial Hinf I digests of the terminally labeled cloned DNA fragment. The first of 13 repetitive Hinf I sites occurred approximately 150 bp from the end of the cloned DNA. After an intervening sequence of approximately 435 bp, a second series of 17 repetitive Hinf I sites occurred. The DNA between the two blocks of repetitions has a unique sequence containing single Dde I, Alu I and Sau 3A sites. Tandem repeats within the inverted terminal repetition could serve to accelerate self-annealing of single strands of DNA to form circular structures during replication.  相似文献   
105.
Two strains of Histoplasma capsulatum were required to prepare maximum yields of H and of M antigen from histoplasmin. The antigens were separated and partially purified by a series of procedures yielding an overall recovery of 70 to 90% of the individual antigens. Stable products suitable for use as reference products were obtained when the final purification step employed DEAE-cellulose with phosphate buffer elution at increasing molarity and decreasing pH. A final step of purification of each antigen with slab acrylamide gel electrophoresis gave products which were highly reactive and specific in a variety of serological tests with sera from persons with proven cases of histoplasmosis and with natural infections of heterologous deep mycoses. These antigens were maximally active at concentrations of 2 to 16 g protein in the complement fixation, capillary precipitin, microimmunodiffusion, or immunoelectrophoresis tests; 0.5 g gave a maximum delayed cutaneous hypersensitivity reaction in homologously infected animals and caused no appreciable reaction in control animals. Although these antigens appeared to be specific when tested with sera from persons with natural infections, the M and H antigens demonstrated the presence of an additional antigen reacting with sera of rabbits immunized with cell membrane and cell particulate fractions of Blastomyces dermatitidis. After purification by electrophoresis, both the H and M antigens of some preparations showed some decomposition and loss of reactivity after storage at 5 C for more than six months. The overall results suggest that the purified H and M antigens of Heiner (12) have multiple serological reactivity and may function in precipitin reactions, complementfixing reactions, hemagglutination of formalin-fixed goose red blood cells, and as antigens for delayed cutaneous tests.  相似文献   
106.
A F Gazdar  H Oie  P Lalley  W W Moss  J D Minna 《Cell》1977,11(4):949-956
The replication patterns of five ecotropic and two amphotropic strains of murine leukemia virus (MuLV) were studied by infecting 41 Chinese hamster x mounse hybrid primary clones segregating mouse (Mus musculus) chromosomes. Ecotropic and amphotropic strains replicated in mouse and some hybrid cells, but not in hamster cells, indicating that replication of exogenous virus requires dominantly expressed mouse cellular genes. The patterns of replication of the five ecotropic strains in hybrid clones were similar; the patterns of replication of the two amphotropic strains were also similar. When compared to each other, however, the replication patterns of ecotropic and amphotropic viruses were dissimilar, indicating that these two classes of MuLV require different mouse chromosomes for replication. Chromosome and isozyme analyses assigned a gene, Rec-1 (replication of ecotropic virus), to mouse chromosome 5 that is necessary and may be sufficient for ecotropic virus replication. Because of preferential retention of mouse chromosomes 15 and 17 in the hybrid clones, however, the possibility that these chromosomes carry genes that are necessary but not sufficient for ecotropic virus replication cannot be excluded. Similarly, the data indicate that mouse chromosome 8 (or possibly 19) carried a gene we have designated Ram-1 (replication of amphotropic virus) which is necessary and may be sufficient for amphotropic virus replication. Because chromosomes 8 and 19 tended to segregate together and two of the three clones excluding 19 have chromosome reaggrangements, we cannot exclude 19 as being independent of amphotropic virus replication. In addition, because of preferential retention, chromosomes 7, 12, 15, 16 and 17 cannot be excluded as being necessary but not sufficient. Hybrid cell genetic studies confirm the assignment of the Fv-1 locus to chromosome 4 previously made by sexual genetics. In addition, our results demonstrate that hybrid cells which have segregated mouse chromosome 4 but have retained 5 become permissive for replication of both N and B tropic strains of MuLV.  相似文献   
107.
Histone mRNA, labeled with 32P or 3H-methionine during the S phase of partially synchronized HeLa cells, was isolated from the polyribosomes and purified as a “9S” component by sucrose gradient sedimentation. We identified two types of 5′ terminals, m7G(5′)pppNmpN and m7G(5′)pppNm-pNmpN, in which the first methylated nucleoside is 7-methylguanosine, the second is either N6,2′-O-dimethyladenosine, 2′-O-methyladenosine, or 2′-O-methylguanosine, and the third is 2′-O-methyluridine, 2′-O-methylcytidine, or 2′-O-methyladenosine. Approximately 1.7% of the 32P label was present in the 5′ terminal structures. Assuming a similar specific radioactivity for all phosphates, this percentage corresponds to an average of one terminal per 335 nucleotides. Histone mRNA differed from bulk polyadenylylated mRNA of HeLa cells in lacking significant amounts of 2′-O-methyluridine or 2′-O-methylcytidine in the second position of the 5′ terminal oligonucleotide and in lacking N6-methyladenosine residues at internal positions.  相似文献   
108.
Guanylyl- and methyltransferases, isolated from purified vaccinia virus, were used to specifically label the 5′ ends of the genome RNAs of influenza A and B viruses. All eight segments were labeled with [α-32P]guanosine 5′-triphosphate or S-adenosyl[methyl-3H]methionine to form “cap” structures of the type m7G(5′)pppNm-, of which unmethylated (p)ppN- represents the original 5′ end. Further analyses indicated that m7G(5′)pppAm, m7G(5′)pppAmpGp, and m7G(5′)pppAmpGpUp were released from total and individual labeled RNA segments by digestion with nuclease P1, RNase T1, and RNase A, respectively. Consequently, the 5′-terminal sequences of most or all individual genome RNAs of influenza A and B viruses were deduced to be (p)ppApGpUp. The presence of identical sequences at the ends of RNA segments of both types of influenza viruses indicates that they have been specifically conserved during evolution.  相似文献   
109.
110.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号