首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1791篇
  免费   389篇
  2180篇
  2016年   26篇
  2015年   45篇
  2014年   35篇
  2013年   62篇
  2012年   77篇
  2011年   86篇
  2010年   45篇
  2009年   35篇
  2008年   63篇
  2007年   77篇
  2006年   66篇
  2005年   51篇
  2004年   64篇
  2003年   76篇
  2002年   55篇
  2001年   87篇
  2000年   61篇
  1999年   67篇
  1998年   25篇
  1997年   21篇
  1996年   30篇
  1995年   22篇
  1994年   24篇
  1992年   68篇
  1991年   50篇
  1990年   51篇
  1989年   53篇
  1988年   49篇
  1987年   51篇
  1986年   40篇
  1985年   51篇
  1984年   37篇
  1983年   38篇
  1982年   24篇
  1981年   23篇
  1980年   17篇
  1979年   22篇
  1978年   29篇
  1977年   26篇
  1976年   16篇
  1975年   18篇
  1974年   31篇
  1973年   22篇
  1972年   20篇
  1971年   25篇
  1970年   25篇
  1969年   24篇
  1968年   24篇
  1967年   17篇
  1966年   19篇
排序方式: 共有2180条查询结果,搜索用时 15 毫秒
171.
172.
Permeabilized rat soleus muscle fibers were subjected to repeated triangular length changes (paired ramp stretches/releases, 0.03 l(0), +/- 0.1 l(0) s(-1) imposed under sarcomere length control) to investigate whether the rate of stiffness recovery after movement increased with the level of Ca(2+) activation. Actively contracting fibers exhibited a characteristic tension response to stretch: tension rose sharply during the initial phase of the movement before dropping slightly to a plateau, which was maintained during the remainder of the stretch. When the fibers were stretched twice, the initial phase of the response was reduced by an amount that depended on both the level of Ca(2+) activation and the elapsed time since the first movement. Detailed analysis revealed three new and important findings. 1) The rates of stiffness and tension recovery and 2) the relative height of the tension plateau each increased with the level of Ca(2+) activation. 3) The tension plateau developed more quickly during the second stretch at high free Ca(2+) concentrations than at low. These findings are consistent with a cross-bridge mechanism but suggest that the rate of the force-generating power-stroke increases with the intracellular Ca(2+) concentration and cross-bridge strain.  相似文献   
173.
Although it is known that three-dimensional structure is well conserved during the evolutionary development of proteins, there have been few studies that consider other parameters apart from divergence of the main-chain coordinates. In this study, we align the structures of 90 pairs of homologous proteins having sequence identities ranging from 5 to 100%. Their structures are compared as a function of sequence identity, including not only consideration of C alpha coordinates but also accessibility, Ooi numbers, secondary structure, and side-chain angles. We discuss how these properties change as the sequences become less similar. This will be of practical use in homology modeling, especially for modeling very distantly related or analogous proteins. We also consider how the average size and number of insertions and deletions vary as sequences diverge. This study presents further quantitative evidence that structure is remarkably well conserved in detail, as well as at the topological level, even when the sequences do not show similarity that is significant statistically.  相似文献   
174.
A NEW TAG FOR IDENTIFYING SEALS   总被引:1,自引:0,他引:1  
  相似文献   
175.
176.
Summary The gene encoding a tissue inhibitor of metalloproteinases, TIMP, has previously been shown to be X-linked in both the human and mouse genomes. We have used a series of somatic cell hybrids segregating translocation and deletion X chromosomes to map the TIMP gene on the human X chromosome. In combination with previous data, the gene can be assigned to Xp11.23Xp11.4. Genetic linkage analyses demonstrate that TIMP is linked to the more distal ornithine transcarbamylase (OTC) locus at a distance of about 22 centimorgans. The data are consistent with the conclusion that TIMP maps to a conserved synteny and linkage group on the proximal short arm of the human X chromosome and on the pericentric region of the mouse X chromosome, including loci for synapsin-1, a member of the raf oncogene family, OTC, and TIMP.  相似文献   
177.
The role of peroxide and catalase on NUV radiation sensitivity was examined in two repair competent E. coli strains, AB1157 and B/r. Exponential phase B/r is considerably more sensitive to NUV radiation than exponential phase AB1157. However, resistance to 5 mmol dm-3 H2O2 was induced in both AB1157 and B/r by pretreating growing cells with 30 mumol dm-3 H2O2. Pretreatment also induced resistance to broad-band NUV radiation in these strains. The addition of catalase to the post-irradiation plating medium increased survival to the same extent as that provided by pretreatment with 30 mumol dm-3 H2O2, in both strains. The NUV radiation sensitivity seen in B/r does not appear to be due to a deficiency in enzymes that scavenge H2O2, as a catalase deficient mutant, E. coli UM1, is more resistant to NUV radiation than B/r. Also, assays for H2O2 scavenging ability show little difference between AB1157 and B/r in this respect. Two hypotheses are put forward to account for the sensitivity of exponential phase B/r. Whilst it is apparent that peroxides and catalase do have a role in NUV radiation damage, it is clear that other factors also influence survival under certain conditions.  相似文献   
178.
Histone mRNA, labeled with 32P or 3H-methionine during the S phase of partially synchronized HeLa cells, was isolated from the polyribosomes and purified as a “9S” component by sucrose gradient sedimentation. We identified two types of 5′ terminals, m7G(5′)pppNmpN and m7G(5′)pppNm-pNmpN, in which the first methylated nucleoside is 7-methylguanosine, the second is either N6,2′-O-dimethyladenosine, 2′-O-methyladenosine, or 2′-O-methylguanosine, and the third is 2′-O-methyluridine, 2′-O-methylcytidine, or 2′-O-methyladenosine. Approximately 1.7% of the 32P label was present in the 5′ terminal structures. Assuming a similar specific radioactivity for all phosphates, this percentage corresponds to an average of one terminal per 335 nucleotides. Histone mRNA differed from bulk polyadenylylated mRNA of HeLa cells in lacking significant amounts of 2′-O-methyluridine or 2′-O-methylcytidine in the second position of the 5′ terminal oligonucleotide and in lacking N6-methyladenosine residues at internal positions.  相似文献   
179.
180.
Annexin A6 (AnxA6) is highly expressed in hypertrophic and terminally differentiated growth plate chondrocytes. Rib chondrocytes isolated from newborn AnxA6-/- mice showed delayed terminal differentiation as indicated by reduced terminal differentiation markers, including alkaline phosphatase, matrix metalloproteases-13, osteocalcin, and runx2, and reduced mineralization. Lack of AnxA6 in chondrocytes led to a decreased intracellular Ca(2+) concentration and protein kinase C α (PKCα) activity, ultimately resulting in reduced extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activities. The 45 C-terminal amino acids of AnxA6 (AnxA6(1-627)) were responsible for the direct binding of AnxA6 to PKCα. Consequently, transfection of AnxA6-/- chondrocytes with full-length AnxA6 rescued the reduced expression of terminal differentiation markers, whereas transfection of AnxA6-/- chondrocytes with AnxA6(1-627) did not or only partially rescued the decreased mRNA levels of terminal differentiation markers. In addition, lack of AnxA6 in matrix vesicles, which initiate the mineralization process in growth plate cartilage, resulted in reduced alkaline phosphatase activity and Ca(2+) and inorganic phosphate (P(i)) content and the inability to form hydroxyapatite-like crystals in vitro. Histological analysis of femoral, tibial, and rib growth plates from newborn mice revealed that the hypertrophic zone of growth plates from newborn AnxA6-/- mice was reduced in size. In addition, reduced mineralization was evident in the hypertrophic zone of AnxA6-/- growth plate cartilage, although apoptosis was not altered compared with wild type growth plates. In conclusion, AnxA6 via its stimulatory actions on PKCα and its role in mediating Ca(2+) flux across membranes regulates terminal differentiation and mineralization events of chondrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号