首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   21篇
  国内免费   1篇
  235篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2017年   5篇
  2015年   12篇
  2014年   8篇
  2013年   6篇
  2012年   16篇
  2011年   21篇
  2010年   15篇
  2009年   8篇
  2008年   20篇
  2007年   10篇
  2006年   8篇
  2005年   13篇
  2004年   10篇
  2003年   5篇
  2002年   6篇
  2001年   10篇
  2000年   2篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1959年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
11.
Because of the water-limited nature and discontinuous plant cover of shortgrass steppe, spatial patterns in ecosystem properties are influenced more by the presence or absence of plants than by plant type. However, plant type may influence temporal patterns of nutrient cycling between plant and soil. Plants having the carbon-3 (C3) or carbon-4 (C4) photosynthetic pathway differ in phenology as well as other attributes that affect nitrogen (N) cycling. We estimated net N mineralization rates and traced nitrogen-15 (15N) additions among plant and soil components during May, July, and September of 1995 in native plots of C3 plants, C4 plants, or mixtures of C3 and C4. Net N mineralization was significantly greater in C3 plots than in C4 plots during both July and September. C3 plots retained significantly more 15N in May than did mixed and C4 plots; these differences in 15N retention were due to greater 15N uptake by C3 plants than by C4 plants during May. There were no significant differences in total 15N retention among plant communities for July and September. Soil 15N was influenced more by presence or absence of plants than by type of plant; greater quantities of 15N remained in soil interspaces between plants than in soil directly under plants for July and September. Our results indicate that plant functional type (C3 versus C4) can affect both the spatial and the temporal patterns of N cycling in shortgrass steppe. Further research is necessary to determine how these intraseasonal differences translate to longer-term and coarser-scale effects of plants on N cycling, retention, and storage. Received 8 December 1997; accepted 6 May 1998.  相似文献   
12.
Plant Functional Type Effects on Trace Gas Fluxes in the Shortgrass Steppe   总被引:3,自引:0,他引:3  
Plant community structure is expected to regulate the microbial processes of nitrification and denitrification by controlling the availability of inorganic N substrates. Thus it could also be a factor in the concomitant release of NO and N2O from soils as a result of these processes. C3 and C4 plants differ in several attributes related to the cycling of nitrogen and were hypothesized to yield differences in trace gas exchange between soil and atmosphere. In this study we estimated fluxes of NO, N2O and CH4 from soils of shortgrass steppe communities dominated by either C3 plants, C4 plants or mixtures of the two types. We collected gas samples weekly from two sites, a sandy clay loam and a clay, throughout the growing seasons of 1995 and 1996. Plant functional type effects on gas fluxes at the clay site were not apparent, however we found several differences among plant communities on the sandy clay loam. CH4 uptake from atmosphere to soil was significantly greater on C4 plots than C3 plots in both years. NO fluxes were significantly greater from C4 plots than from C3 plots in 1995. NO fluxes from C3 and mixed plots were not significantly different between 1995 and 1996, however fluxes from C4 plots were significantly greater in 1995 compared to 1996. Results indicate that under certain environmental conditions, particularly when factors such as moisture and temperature are not limiting, plant community composition can play an important role in regulating trace gas exchange.  相似文献   
13.

Introduction

To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years.

Methods

In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years.

Results

68% of the patients had accelerated hand BMD loss (>-0.003 g/cm2) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage.

Conclusions

In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.  相似文献   
14.
Histamine H1 and serotonin 5-HT2A receptors present in the CNS have been implicated in various neuropsychiatric disorders. 9-Aminomethyl-9,10-dihydroanthracene (AMDA), a conformationally constrained diarylalkyl amine derivative, has affinity for both of these receptors. A structure–affinity relationship (SAFIR) study was carried out studying the effects of N-methylation, varying the linker chain length and constraint of the aromatic rings on the binding affinities of the compounds with the 5-HT2A and H1 receptors. Homology modeling of the 5-HT2A and H1 receptors suggests that AMDA and its analogs, the parent of which is a 5-HT2A antagonist, can bind in a fashion analogous to that of classical H1 antagonists whose ring systems are oriented toward the fifth and sixth transmembrane helices. The modeled orientation of the ligands are consistent with the reported site-directed mutagenesis data for 5-HT2A and H1 receptors and provide a potential explanation for the selectivity of ligands acting at both receptors.  相似文献   
15.
We studied the evolution of human immunodeficiency virus type 1 (HIV-1) envelope function during the process of coreceptor switching from CCR5 to CXCR4. Site-directed mutagenesis was used to introduce most of the possible intermediate mutations in the envelope for four distinct coreceptor switch mutants, each with a unique pattern of CCR5 and CXCR4 utilization that extended from highly efficient use of both coreceptors to sole use of CXCR4. Mutated envelopes with some preservation of entry function on either CCR5- or CXCR4-expressing target cells were further characterized for their sensitivity to CCR5 or CXCR4 inhibitors, soluble CD4, and the neutralizing antibodies b12-IgG and 4E10. A subset of mutated envelopes was also studied in direct CD4 or CCR5 binding assays and in envelope-mediated fusion reactions. Coreceptor switch intermediates displayed increased sensitivity to CCR5 inhibitors (except for a few envelopes with mutations in V2 or C2) that correlated with a loss in CCR5 binding. As use of CXCR4 improved, infection mediated by the mutated envelopes became more resistant to soluble CD4 inhibition and direct binding to CD4 increased. These changes were accompanied by increasing resistance to the CXCR4 inhibitor AMD3100. Sensitivity to neutralizing antibody was more variable, although infection of CXCR4-expressing targets was generally more sensitive to neutralization by both b12-IgG and 4E10 than infection of CCR5-expressing target cells. These changes in envelope function were uniform in all four series of envelope mutations and thus were independent of the final use of CCR5 and CXCR4. Decreased CCR5 and increased CD4 binding appear to be common features of coreceptor switch intermediates.  相似文献   
16.
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.  相似文献   
17.
Studies evaluated the effects of hexanic extracts from the fruits and flowers ofClusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis.  相似文献   
18.
Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons. Despite its higher cellulose content per dry mass, Dacotah switchgrass harvested after wintering consistently gave a lower saccharification yield than the other two varieties harvested in the fall. The recalcitrance of upland cultivars and over-wintered switchgrass may require more severe pretreatment conditions. We discuss the key features of different pretreatment technologies and differences in switchgrass cultivars and harvest seasons on hydrolysis performance for the applied pretreatment methods.  相似文献   
19.
The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25 mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO2, and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of β-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of β-glucosidase increased the xylan digestibility of alkaline treated samples due to the β-xylosidase activity present in Novozyme-188.  相似文献   
20.
Cellulolytic enzymes consist of a catalytic domain, a linking peptide, and a binding domain. The paper describes research on carboxylic acids that have potential as catalytic domains for constructing organic macromolecules for use in cellulose hydrolysis that mimic the action of enzymes. The tested domains consist of the series of mono-, di-, and tricarboxylic acids with a range of pK(a)'s. This paper systematically characterizes the acids with respect to hydrolysis of cellobiose, cellulose in biomass, and degradation of glucose and compares these kinetics data to dilute sulfuric acid. Results show that acid catalyzed hydrolysis is proportional to H+ concentration. The tested carboxylic acids did not catalyze the degradation of glucose while sulfuric acid catalyzed the degradation of glucose above that of water alone. Consequently, overall yields of glucose obtained from cellobiose and cellulose are higher for the best carboxylic acid tested, maleic acid, when compared to sulfuric acid at equivalent solution pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号