首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   102篇
  1239篇
  2022年   9篇
  2021年   21篇
  2020年   12篇
  2019年   11篇
  2017年   8篇
  2016年   15篇
  2015年   29篇
  2014年   45篇
  2013年   54篇
  2012年   61篇
  2011年   83篇
  2010年   45篇
  2009年   40篇
  2008年   59篇
  2007年   57篇
  2006年   56篇
  2005年   74篇
  2004年   78篇
  2003年   60篇
  2002年   69篇
  2001年   22篇
  2000年   14篇
  1999年   11篇
  1998年   22篇
  1997年   10篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1989年   8篇
  1988年   10篇
  1986年   6篇
  1985年   11篇
  1984年   7篇
  1983年   10篇
  1982年   12篇
  1981年   16篇
  1980年   18篇
  1979年   10篇
  1978年   12篇
  1976年   13篇
  1975年   7篇
  1974年   8篇
  1973年   10篇
  1972年   8篇
  1971年   7篇
  1970年   6篇
排序方式: 共有1239条查询结果,搜索用时 15 毫秒
21.
Pseudomonas aeruginosa alcohol dehydrogenase (PaADH; ADH, EC 1.1.1.1) catalyzes the reversible oxidation of primary and secondary alcohols to the corresponding aldehydes and ketones, using NAD as coenzyme. We crystallized the ternary complex of PaADH with its coenzyme and a substrate molecule and determined its structure at a resolution of 2.3 A, using the molecular replacement method. The PaADH tetramer comprises four identical chains of 342 amino acid residues each and obeys ~222-point symmetry. The PaADH monomer is structurally similar to alcohol dehydrogenase monomers from vertebrates, archaea, and bacteria. The stabilization of the ternary complex of PaADH, the coenzyme, and the poor substrate ethylene glycol (k(cat) = 4.5 sec(-1); Km > 200 mM) was due to the blocked exit of the coenzyme in the crystalline state, combined with a high (2.5 M) concentration of the substrate. The structure of the ternary complex presents the precise geometry of the Zn coordination complex, the proton-shuttling system, and the hydride transfer path. The ternary complex structure also suggests that the low efficiency of ethylene glycol as a substrate results from the presence of a second hydroxyl group in this molecule.  相似文献   
22.
Septins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of hetero-oligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to copolymerize due to incompatible ends. Here we isolated hexamers and octamers of specific composition from human cells and show that hexamers and octamers polymerize individually and, surprisingly, with each other. Binding of the Borg homology domain 3 (BD3) domain of Borg3 results in distinctive clustering of each filament type. Moreover, we show that the organization of hexameric and octameric complexes is inverted compared with its original prediction. This revised septin organization is congruent with the organization and behavior of yeast septins suggesting that their properties are more conserved than was previously thought.  相似文献   
23.
24.
25.
Summary Recently, the Wilson's disease locus (WND) has been mapped to the long arm of chromosome 13. We have analyzed segregation of serveral chromosome 13 markers flanking the WND locus and used multipoint linkage analysis to determine the most likely WND genotype of each of 57 unaffected individuals in 5 Wilson's disease families. Approximately 46% of these could be classified as carrier (heterozygote), homozygous normal, or homozygous affected (not yet symptomatic) with a probability of at least 90%, while 77% could be classified with a probability of at least 80%. Our results demonstrate that even though there is a significant decrease on average in serum copper concentration in Wilson's disease heterozygotes compared to normal homozygotes, other sources of variation in serum copper concentration are much greater and preclude use of serum copper to detect heterozygotes for Wilson's disease. Subsequent analyses showed that a familial component, independent of WND genotype, is the major factor accounting for variation in ceruloplasmin levels among unaffected individuals; age is another factor accounting for more variation in copper levels among unaffected individuals than WND genotype.  相似文献   
26.
SPINDLY (SPY) is a negative regulator of gibberellin (GA) responses; however, spy mutants exhibit various phenotypic alterations not found in GA-treated plants. Assaying for additional roles for SPY revealed that spy mutants are resistant to exogenously applied cytokinin. GA also repressed the effects of cytokinin, suggesting that there is cross talk between the two hormone-response pathways, which may involve SPY function. Two spy alleles showing severe (spy-4) and mild (spy-3) GA-associated phenotypes exhibited similar resistance to cytokinin, suggesting that SPY enhances cytokinin responses and inhibits GA signaling through distinct mechanisms. GA and spy repressed numerous cytokinin responses, from seedling development to senescence, indicating that cross talk occurs early in the cytokinin-signaling pathway. Because GA3 and spy-4 inhibited induction of the cytokinin primary-response gene, type-A Arabidopsis response regulator 5, SPY may interact with and modify elements from the phosphorelay cascade of the cytokinin signal transduction pathway. Cytokinin, on the other hand, had no effect on GA biosynthesis or responses. Our results demonstrate that SPY acts as both a repressor of GA responses and a positive regulator of cytokinin signaling. Hence, SPY may play a central role in the regulation of GA/cytokinin cross talk during plant development.  相似文献   
27.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
28.
A chip-based biosensor technology using surface plasmon resonance (SPR) was developed for studying the interaction of ligands and G protein-coupled receptors (GPCRs). GPCRs, the fourth largest superfamily in the human genome, are the largest class of targets for drug discovery. We have expressed the three subtypes of alpha(2)-adrenergic receptor (alpha(2)-AR), a prototypical GPCR as functional fusion proteins in baculovirus-infected insect cells. The localization of the expressed receptor was observed in intracellular organelles, as detected by eGFP fluorescence. In addition, the deletion mutants of alpha(2B)-AR, with a deletion in the 3rd intracellular loop, exhibited unaltered K(d) values and enhanced stability, thus making them more promising candidates for crystallization. SPR demonstrated that small molecule ligands can bind the detergent-solubilized receptor, thus proving that alpha(2)-AR is active even in a lipid-free environment. The K(d) values obtained from the biosensor analysis and traditional ligand binding studies correlate well with each other. This is the first demonstration of the binding of a small molecule to the detergent-solubilized state of alpha(2)-ARs and interaction of low-molecular mass-ligands in real time in a label-free environment. This technology will also allow the development of high throughput platform for screening a large number of compounds for generation of leads.  相似文献   
29.
OBJECTIVE: Characterizing clinical and biochemical features of children diagnosed with diabetes mellitus between the ages of 6-24 months. DESIGN AND METHODS: Medical records of 42 children diagnosed with diabetes mellitus at age of 6-24 months were reviewed for gender, ethnic origin, family medical history, clinical and biochemical features at onset of diabetes compared with 60 diabetic patients diagnosed at age 5-16 years. RESULTS: Children diagnosed at 6-24 months had at onset more symptoms of apathy, restlessness, hyperglycemia during acute illness and a lower rate of remission than those diagnosed at older age (p < 0.001), significantly more episodes of diabetic ketoacidosis (83% vs. 40%, p < 0.001), lower HbA1c levels (mean 11.6 +/- 3.4 vs. 13.75 +/- 3.4%, p < 0.05) and a higher rate of celiac disease (12% vs. 3%, p = 0.046). There were no significant differences as to other autoimmune diseases. CONCLUSIONS: Patients with diabetes presenting at 6-24 months might be associated with a different clinical pattern and higher rate of celiac disease than diabetes presenting later in life. Understanding the nature and course of diabetes in this age group is crucial for planning interventional and preventive programs.  相似文献   
30.
The last 3 rounds (3-5) of CAPRI included a wide range of docking targets. Several targets were especially challenging, since they involved large-scale movements and symmetric rearrangement, while others were based on homology models. We have approached the targets with a variety of geometry-based docking algorithms that include rigid docking, symmetric docking, and flexible docking with symmetry constraints. For all but 1 docking target, we were able to submit at least 1 acceptable quality prediction. Here, we detail for each target the prediction methods used and the specific biological data employed, and supply a retrospective analysis of the results. We highlight the advantages of our techniques, which efficiently exploit the geometric shape complementarity properties of the interaction. These enable them to run only few minutes on a standard PC even for flexible docking, thus proving their scalability toward computational genomic scale experiments. We also outline the major required enhancements, such as the introduction of side-chain position refinement and the introduction of flexibility for both docking partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号