首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1014篇
  免费   102篇
  1116篇
  2022年   9篇
  2021年   15篇
  2020年   11篇
  2019年   10篇
  2018年   6篇
  2016年   13篇
  2015年   24篇
  2014年   39篇
  2013年   49篇
  2012年   56篇
  2011年   72篇
  2010年   38篇
  2009年   37篇
  2008年   54篇
  2007年   54篇
  2006年   50篇
  2005年   64篇
  2004年   75篇
  2003年   57篇
  2002年   67篇
  2001年   21篇
  2000年   13篇
  1999年   9篇
  1998年   21篇
  1997年   8篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   9篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   9篇
  1988年   11篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1982年   11篇
  1981年   14篇
  1980年   14篇
  1979年   9篇
  1978年   8篇
  1976年   12篇
  1975年   5篇
  1973年   8篇
  1972年   7篇
  1971年   6篇
  1970年   7篇
  1969年   5篇
  1968年   5篇
排序方式: 共有1116条查询结果,搜索用时 0 毫秒
31.
32.
Intraspecific Variation in Chemical Attraction of Rice to Insect Predators   总被引:2,自引:0,他引:2  
The olfactory response of predators of the brown planthopper,Nilaparvata lugensStål, to different genotypes of rice (14 cultivars and breeding lines ofOryza sativaL. and 1 wild species,Oryza nivaraSharma et Shastry) was measured in an airflow olfactometer. Odor from rice plants attracted more females of the mirid predatorCyrtorhinus lividipennisReuter than plain air (control) on only 6 of the 15 rice genotypes. Orientation ofC. lividipennistoward volatiles of certain rice genotypes was apparent even when the plants were free of the brown planthopper. However, the predator distinguished between prey-infested and uninfested plants and preferred plants with eggs over plants with nymphs. The predator did not distinguish different stages of plant growth (vegetative, booting, or flowering). Plants artificially injured to simulate brown planthopper oviposition wounds were not as attractive to the predator as plants on which the planthopper had oviposited. The preassay preconditioning on the cultivar TN1 did not produce a predator bias for this genotype. This suggests that rearing effects or chemically mediated associative learning reported for some natural enemies did not influenceC. lividipennis'host response. Results with another predator, the coccinellidMicraspis hirashimaiSasaji, produced less consistent behavior. Planthopper-infested plants attracted more females ofM. hirashimaithan unifested plants in only 1 of the 12 rice genotypes evaluated. Implications for augmenting predators by rice cultivar selection and modification are discussed.  相似文献   
33.
Cellulose biosynthesis and function in bacteria.   总被引:65,自引:1,他引:65       下载免费PDF全文
The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.  相似文献   
34.
Septins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of hetero-oligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to copolymerize due to incompatible ends. Here we isolated hexamers and octamers of specific composition from human cells and show that hexamers and octamers polymerize individually and, surprisingly, with each other. Binding of the Borg homology domain 3 (BD3) domain of Borg3 results in distinctive clustering of each filament type. Moreover, we show that the organization of hexameric and octameric complexes is inverted compared with its original prediction. This revised septin organization is congruent with the organization and behavior of yeast septins suggesting that their properties are more conserved than was previously thought.  相似文献   
35.
BACKGROUND: Cellular binding of annexin V and membrane permeability to 7-aminoactinomycin D (7AAD) are important tools for studying apoptosis and cell death by flow cytometry. Combining viability markers with cell surface marker expression is routinely used to study various cell lineages. Current classification methods using strict thresholds, or "gates," on the fluorescent intensity of these markers are subjective in nature and may not fully describe the phenotypes of interest. We have developed objective criteria for phenotypic boundary recognition through the application of statistical pattern recognition. This task was achieved using artificial neural networks (ANNs) that were trained to recognize subsets of cells with known phenotypes, and then used to determine decision boundaries based on statistical measures of similarity. This approach was then used to test the hypothesis that erythropoietin (EPO) inhibits apoptosis and cell death in erythroid precursor cells in murine bone marrow. METHODS: Our method was developed for classification of viability using an in vitro cell system and then applied to an ex vivo analysis of murine late-stage erythroid progenitors. To induce apoptosis and cell death in vitro, an EPO-dependent human leukemic cell line, UT-7(EPO) cells were incubated without recombinant human erythropoietin (rhEPO) for 72 h. Five different ANNs were trained to recognize live, apoptotic, and dead cells using a "known" subset of the data for training, and a K-fold cross validation procedure for error estimation. The ANNs developed with the in vitro system were then applied to classify cells from an ex vivo study of rhEPO treated mice. Tg197 (human tumor necrosis-alpha transgenic mice, a model of anemia of chronic disease) received a single s.c. dose of 10,000 U/kg rhEPO and femoral bone marrow was collected 1, 2, 4, and 8 days after dosing. Femoral bone marrow cells were stained with TER-119 PE, CD71 APC enable identification of erythroid precursors, and annexin V FITC and 7AAD to identify the apoptotic and dead cells. During classification forward and side angle light scatter were also input to all pattern recognition systems. RESULTS: Similar decision boundaries between live, apoptotic, and dead cells were consistently identified by the neural networks. The best performing network was a radial basis function multi-perceptron that produced an estimated average error rate of 4.5% +/- 0.9%. Using these boundaries, the following results were reached: depriving UT-7(EPO) cells of rhEPO induced apoptosis and cell death while the addition of rhEPO rescued the cells in a dose-dependent manner. In vivo, treatment with rhEPO resulted in an increase of live erythroid cells in the bone marrow to 119.8% +/- 9.8% of control at the 8 day time point. However, a statistically significant transient increase in TER-119(+) CD71(+) 7AAD(+) dead erythroid precursors was observed at the 1 and 2 day time points with a corresponding decrease in TER-119(+) CD71(+) 7AAD(-) Annexin V(-) live erythroid precursors, and no change in the number of TER-119(+) CD71(+) annexin V(+) 7AAD(-) apoptotic erythroid precursors in the bone marrow. CONCLUSIONS: A statistical pattern recognition approach to viability classification provides an objective rationale for setting decision boundaries between "positive" and "negative" intensity measures in cytometric data. Using this approach we have confirmed that rhEPO inhibits apoptosis and cell death in an EPO dependent cell line in vitro, but failed to do so in vivo, suggesting EPO may not act as a simple antiapoptotic agent in the bone marrow. Rather, homeostatic mechanisms may regulate the pharmacodynamic response to rhEPO.  相似文献   
36.
The human intestine has evolved in the presence of diverse enteric microflora. TLRs convert the recognition of pathogen-associated molecules in the gut into signals for anti-microbial peptide expression, barrier fortification, and proliferation of epithelial cells. Healing of injured intestinal epithelium and clearance of intramucosal bacteria require the presence of intact TLR signaling. Nucleotide oligomerization domain (Nod)1 and Nod2 are additional pattern recognition receptors that are required for defense against invasive enteric pathogens. Through spatial and functional localization of TLR and Nod molecules, the normal gut maintains a state of controlled inflammation. By contrast, patients with inflammatory bowel disease demonstrate inflammation in response to the normal flora. A subset of these patients carry polymorphisms in TLR and CARD15/NOD2 genes. A better understanding of the delicate regulation of TLR and Nod molecules in the gut may lead to improved treatment for enteric infections and idiopathic inflammatory bowel diseases.  相似文献   
37.
Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRβ accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRβ reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.  相似文献   
38.
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2.  相似文献   
39.
Yalin  David  Shenker  Moshe 《Biogeochemistry》2022,157(3):327-353
Biogeochemistry - The South China Sea (SCS) is one of the largest marginal seas in the world, but the processes that control the silicon cycle are not well understood. Here, we analyse the factors...  相似文献   
40.
The Na(+)-Ca(2+) exchanger (NCX) mediated Ca(2+) fluxes are essential for handling Ca(2+) homeostasis in many cell-types. Eukaryotic NCX variants contain regulatory CBD1 and CBD2 domains, whereas in distinct variants the Ca(2+) binding to Ca3-Ca4 sites of CBD1 results either in sustained activation, inhibition or no effect. CBD2 contains an alternatively spliced segment, which is expressed in a tissue-specific manner although its impact on allosteric regulation remains unclear. Recent studies revealed that the Ca(2+) binding to Ca3-Ca4 sites results in interdomain tethering of CBDs, which rigidifies CBDs movements with accompanied slow dissociation of "occluded" Ca(2+). Here we investigate the effects of CBD2 variants on Ca(2+) occlusion in the two-domain construct (CBD12). Mutational studies revealed that both sites (Ca3 and Ca4) contribute to Ca(2+) occlusion, whereas after dissociation of the first Ca(2+) ion the second Ca(2+) ion becomes occluded. This mechanism is common for the brain, kidney and cardiac splice variants of CBD12, although the occluded Ca(2+) exhibits 20-50-fold difference in off-rates among the tested variants. Therefore, the spliced exons on CBD2 affect the rate-limiting step of the occluded Ca(2+) dissociation at the primary regulatory sensor to shape dynamic features of allosteric regulation in NCX variants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号