首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   133篇
  国内免费   10篇
  1358篇
  2022年   10篇
  2021年   12篇
  2020年   7篇
  2019年   16篇
  2018年   18篇
  2017年   19篇
  2016年   23篇
  2015年   51篇
  2014年   52篇
  2013年   46篇
  2012年   64篇
  2011年   59篇
  2010年   48篇
  2009年   41篇
  2008年   46篇
  2007年   62篇
  2006年   53篇
  2005年   42篇
  2004年   52篇
  2003年   44篇
  2002年   36篇
  2001年   47篇
  2000年   52篇
  1999年   28篇
  1998年   23篇
  1997年   22篇
  1996年   21篇
  1995年   14篇
  1994年   18篇
  1993年   14篇
  1992年   28篇
  1991年   28篇
  1990年   18篇
  1989年   17篇
  1988年   20篇
  1987年   11篇
  1986年   16篇
  1985年   19篇
  1984年   11篇
  1983年   11篇
  1982年   8篇
  1979年   8篇
  1978年   9篇
  1977年   12篇
  1975年   12篇
  1974年   9篇
  1972年   6篇
  1971年   8篇
  1967年   6篇
  1966年   8篇
排序方式: 共有1358条查询结果,搜索用时 23 毫秒
41.
Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches.  相似文献   
42.
X-linked adrenoleukodystrophy (X-ALD) results from mutations in ABCD1. ABCD1 resides on Xq28 and encodes an integral peroxisomal membrane protein (ALD protein [ALDP]) that is of unknown function and that belongs to the ATP-binding cassette-transporter superfamily. Individuals with ABCD1 mutations accumulate very-long-chain fatty acids (VLCFA) (carbon length >22). Childhood cerebral X-ALD is the most devastating form of the disease. These children have the earliest onset (age 7.2 +/- 1.7 years) among the clinical phenotypes for ABCD1 mutations, but onset does not occur at <3 years of age. Individuals with either peroxisomal biogenesis disorders (PBD) or single-enzyme deficiencies (SED) in the peroxisomal beta-oxidation pathway--disorders such as acyl CoA oxidase deficiency and bifunctional protein deficiency--also accumulate VLCFA, but they present during the neonatal period. Until now, it has been possible to distinguish unequivocally between individuals with these autosomal recessively inherited syndromes and individuals with ABCD1 mutations, on the basis of the clinical presentation and measurement of other biochemical markers. We have identified three newborn boys who had clinical symptoms and initial biochemical results consistent with PBD or SED. In further study, however, we showed that they lacked ALDP, and we identified deletions that extended into the promoter region of ABCD1 and the neighboring gene, DXS1357E. Mutations in DXS1357E and the ABCD1 promoter region have not been described previously. We propose that the term "contiguous ABCD1 DXS1357E deletion syndrome" (CADDS) be used to identify this new contiguous-gene syndrome. The three patients with CADDS who are described here have important implications for genetic counseling, because individuals with CADDS may previously have been misdiagnosed as having an autosomal recessive PBD or SED  相似文献   
43.
Cochlear inner hair cells (IHCs) develop from pre‐sensory pacemaker to sound transducer. Here, we report that this involves changes in structure and function of the ribbon synapses between IHCs and spiral ganglion neurons (SGNs) around hearing onset in mice. As synapses matured they changed from holding several small presynaptic active zones (AZs) and apposed postsynaptic densities (PSDs) to one large AZ/PSD complex per SGN bouton. After the onset of hearing (i) IHCs had fewer and larger ribbons; (ii) CaV1.3 channels formed stripe‐like clusters rather than the smaller and round clusters at immature AZs; (iii) extrasynaptic CaV1.3‐channels were selectively reduced, (iv) the intrinsic Ca2+ dependence of fast exocytosis probed by Ca2+ uncaging remained unchanged but (v) the apparent Ca2+ dependence of exocytosis linearized, when assessed by progressive dihydropyridine block of Ca2+ influx. Biophysical modeling of exocytosis at mature and immature AZ topographies suggests that Ca2+ influx through an individual channel dominates the [Ca2+] driving exocytosis at each mature release site. We conclude that IHC synapses undergo major developmental refinements, resulting in tighter spatial coupling between Ca2+ influx and exocytosis.  相似文献   
44.
Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.  相似文献   
45.
46.
Structure and Function of the Hair Cell Ribbon Synapse   总被引:6,自引:0,他引:6  
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years.  相似文献   
47.
48.
Homogeneity-time is defined and introduced as the criterion for mixing quality in bioreactors. The criterion could replace the mixing time, in the case, when more than one measuring point (sensors) is included in the measuring system. Results based on the homogeneity-time and the temperature pulse method, achieved in stirred tank reactors under aerated conditions as well as in a jet-mixed tank, are presented.List of Symbols C p,p kJ/kg K Heat capacity of the pulse medium - C p,s kJ/kg K Heat capacity of the reactor-medium - F m3/s Flow rate of the pulse-input - i Inhomogeneity - I N Inhomogeneity-number - M (t) °C Ideal response curve - m deNumber of combinations for certain number of sensors acc. to Table 1 - n Number of sensor - p kg/m3 Density of the pulse medium - kg/m3 Density of the tank medium - s 1 °C Mean absolute deviation of the sensor temperatures related on the ideal response curve s2 s Mean absolute deviation of the homogeneity-times related on the time achieved with 6 sensors - t s Time - t (i) s Homogeneity-time - t ps s Starting time of tracer injection - t PE s End time of tracer injection - T E °C Mean medium temperature at the end of experiment - T k °C Temperature at k-th sensor position - T p °C Pulse temperature - T s °C Mean medium temperature before the tracer injection - V s m3 Tank volume before pulse input  相似文献   
49.
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.  相似文献   
50.
Embryonic stem (ES) cells are pluripotent cells isolated from mammalian preimplantation embryos. They are capable of differentiating into all cell types and therefore hold great promise in regenerative medicine. Here we show that murine ES cells can be fully SILAC (stable isotope labeling by amino acids in cell culture)-labeled when grown feeder-free during the last phase of cell culture. We fractionated the SILAC-labeled ES cell proteome by one-dimensional gel electrophoresis and by isoelectric focusing of peptides. High resolution analysis on a linear ion trap-orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 5,000 distinct proteins. This is the largest quantified proteome reported to date and contains prominent stem cell markers such as OCT4, NANOG, SOX2, and UTF1 along with the embryonic form of RAS (ERAS). We also quantified the proportion of the ES cell proteome present in cytosolic, nucleoplasmic, and membrane/chromatin fractions. We compared two different preparation approaches, cell fractionation followed by one-dimensional gel separation and in-solution digestion of total cell lysate combined with isoelectric focusing, and found comparable proteome coverage with no apparent bias for any functional protein classes for either approach. Bioinformatics analysis of the ES cell proteome revealed a broad distribution of cellular functions with overrepresentation of proteins involved in proliferation. We compared the proteome with a recently published map of chromatin states of promoters in ES cells and found excellent correlation between protein expression and the presence of active and repressive chromatin marks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号