首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   59篇
  436篇
  2022年   3篇
  2021年   7篇
  2019年   4篇
  2018年   3篇
  2017年   10篇
  2016年   7篇
  2015年   16篇
  2014年   13篇
  2013年   21篇
  2012年   23篇
  2011年   26篇
  2010年   8篇
  2009年   9篇
  2008年   12篇
  2007年   12篇
  2006年   17篇
  2005年   18篇
  2004年   20篇
  2003年   8篇
  2002年   14篇
  2001年   12篇
  2000年   14篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1986年   5篇
  1985年   8篇
  1983年   5篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1967年   2篇
  1922年   3篇
  1919年   4篇
  1876年   2篇
排序方式: 共有436条查询结果,搜索用时 0 毫秒
41.
The NADPH oxidases (Noxs) are a family of transmembrane oxidoreductases that produce superoxide and other reactive oxygen species (ROS). Nox5 was the last of the conventional Nox isoforms to be identified and is a calcium-dependent enzyme that does not depend on accessory subunits for activation. Recently, Nox5 was shown to be expressed in human blood vessels and therefore the goal of this study was to determine whether nitric oxide (NO) can modulate Nox5 activity. Endogenously produced NO potently inhibited basal and stimulated Nox5 activity and this inhibition was reversible with chronic, but not acute, exposure to L-NAME. Nox5 activity was reduced by NO donors, iNOS, and eNOS and in endothelial cells and LPS-stimulated smooth muscle cells in a manner dependent on NO concentration. ROS production was diminished by NO in an isolated enzyme activity assay replete with surplus calcium and NADPH. There was no evidence for NO-dependent changes in tyrosine nitration, glutathiolation, or phosphorylation of Nox5. In contrast, there was evidence for the increased nitrosylation of Nox5 as determined by the biotin-switch assay and mass spectrometry. Four S-nitrosylation sites were identified and of these, mutation of C694 dramatically lowered Nox5 activity, NO sensitivity, and biotin labeling. Furthermore, coexpression of the denitrosylation enzymes thioredoxin 1 and GSNO reductase prevented NO-dependent inhibition of Nox5. The potency of NO against other Nox enzymes was in the order Nox1 ≥ Nox3 > Nox5 > Nox2, whereas Nox4 was refractory. Collectively, these results suggest that endogenously produced NO can directly S-nitrosylate and inhibit the activity of Nox5.  相似文献   
42.
A major hallmark of the autoimmune demyelinating disease multiple sclerosis (MS) is immune cell infiltration into the brain and spinal cord resulting in myelin destruction, which not only slows conduction of nerve impulses, but causes axonal injury resulting in motor and cognitive decline. Current treatments for MS focus on attenuating immune cell infiltration into the central nervous system (CNS). These treatments decrease the number of relapses, improving quality of life, but do not completely eliminate relapses so long-term disability is not improved. Therefore, therapeutic agents that protect the CNS are warranted. In both animal models as well as human patients with MS, T cell entry into the CNS is generally considered the initiating inflammatory event. In order to assess if a drug protects the CNS, any potential effects on immune cell infiltration or proliferation in the periphery must be ruled out. This protocol describes how to determine whether CNS protection observed after drug intervention is a consequence of attenuating CNS-infiltrating immune cells or blocking death of CNS cells during inflammatory insults. The ability to examine MS treatments that are protective to the CNS during inflammatory insults is highly critical for the advancement of therapeutic strategies since current treatments reduce, but do not completely eliminate, relapses (i.e., immune cell infiltration), leaving the CNS vulnerable to degeneration.  相似文献   
43.
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.  相似文献   
44.
Evidence implicates pivotal roles for parathyroid hormone-related protein (PTHrP) in stimulating cell growth and differentiation, placental calcium transport, and placental vasodilatation. As spontaneously hypertensive rat (SHR) fetuses are growth restricted compared with those of its normotensive control, the Wistar Kyoto (WKY) rat, we examined intrauterine PTHrP and total and ionic calcium concentrations in these rats. Fetal plasma PTHrP concentrations, but not total calcium concentrations, were lower in the SHR compared with WKY (P < 0.05). SHR placental concentrations of PTHrP were lower than in WKY (P < 0.03) and failed to show the increase observed in WKY near term (P < 0.05). PTHrP concentrations in amniotic fluid from SHR were not raised near term and were lower compared with WKY (P < 0.0005). The increased ionic calcium concentrations in amniotic fluid in the WKY near term (P < 0.05) were not detected in the SHR. Thus SHR fetal plasma, placental, and amniotic fluid PTHrP concentrations were reduced and associated with fetal growth restriction. We suggest that PTHrP may play a role in the etiology of both growth restriction during pregnancy and hypertension later in life.  相似文献   
45.
本文通过建立图象分析方法对免疫组织化学反应结果进行定量,检测观察H-ras在口腔颊粘膜上皮在正常(N)、慢性炎症(IF)、癌旁上皮(EAC)和鳞癌(SCC)的变化过程中的表达并进行分析。结果显示H-ras在SCC组中,以中等分化的SCC无论是H-ras表达的量还是细胞阳性率都较高。此外,组织学观察显示,H-ras在处于分化末期但尚未角化的正常上皮细胞中有较高的表达。本文结果显示了H-ras的过表达与上皮细胞的会化程度密切相关。本研究还显示,所采用的阳性区域透光值、平均总透光值及阳性反应区域与阴性反应区域比值可靠并有相关性。这进一步说明了用免疫组化定量方法检测H-ras癌基因表达的精确和可靠性。  相似文献   
46.

Background

In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs). ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown.

Results

To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2.

Conclusions

These findings expand upon the current model for the involvement of ERK1/2 signaling in RBCs. These findings also identify additional protein targets of this pathway other than the RBC adhesion molecule ICAM-4 and enhance the understanding of the mechanism of small molecule inhibitors of MEK/1/2/ERK1/2, which could be effective in ameliorating RBC hemorheology and adhesion, the hallmarks of SCD.  相似文献   
47.
Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.Abbreviations: BPTI – bovine pancreatic trypsin inhibitor; LP – linear prediction; FT – Fourier transform; S/N – signal-to-noise ratio; FID – free induction decay  相似文献   
48.
49.
The morphology, ontogeny, and vascular anatomy of the staminate inflorescences and florets of seven species of Allocasuarina are described. The generally terminal but open-ended inflorescences occur on monoecious or staminate dioecious trees and consist of whorls of bracts, each subtending a sessile axillary floret. Each floret consists of one terminal stamen with a bilobed, tetrasporangiate anther enclosed typically by cuculliform appendages, commonly considered bracteoles, an inner median pair and an outer lateral pair. The mature stamen is exerted, the anther is basifixed and is extrorsely dehiscent. In early development of a male inflorescence very little internodal elongation occurs and enclosing cataphylls appear. The inflorescence apex is a low dome with a uniseriate tunica and a small group of central corpus cells. Bract primordia are initiated by periclinal divisions of C1 followed by further divisions of the corpus and anticlinal divisions in the tunica. The bracts are epinastic and become gamophyllous except apically by cell divisions in both sides of each primordium. Stomata are restricted to the axis furrows and the abaxial tips of the bracts. The axillary florets arise in acropetal succession initiated by periclinal divisions in C1 accompanied by anticlinal divisions in the tunica. The lateral floral appendages are also initiated by C1 followed by anticlinal divisions in the tunica. They become adnate basally later with the subtending bract. The median sterile appendages are initiated in a manner similar to the initiation of the outer appendages. The stamen is initiated by divisions in the outer layers of the corpus and in the tunica, and then develops first by apical growth followed by intercalary growth. The vascular system of the inflorescence is identical to that of the vegetative stem. Each floret is supplied by a single bundle that has its source in a branch from each of the two traces supplying a bract. Six bundles arise from the floral bundle; four of these terminate in the base of the stamen and two form an amphicribal bundle that supplies the anther. Pollen is binucleate, 3- to 7-porate. The exine is tegillate.  相似文献   
50.
Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics. We defined a set of high-confidence Pom1 targets that were enriched for cytoskeletal and cell growth functions. Cdr2 was the only cell cycle target of Pom1 kinase activity that we identified in cells. Mutation of Pom1-dependent phosphorylation sites in the C terminus of Cdr2 inhibited mitotic entry but did not impair Cdr2 localization. In addition, we found that Pom1 phosphorylated multiple substrates that function in polarized cell growth, including Tea4, Mod5, Pal1, the Rho GAP Rga7, and the Arf GEF Syt22. Purified Pom1 phosphorylated these cell polarity targets in vitro, confirming that they are direct substrates of Pom1 kinase activity and likely contribute to regulation of polarized growth by Pom1. Our study demonstrates that Pom1 acts in a linear pathway to control cell cycle progression while regulating a complex network of cell growth targets.The coordination of cell growth and division represents a fundamental concept in cell biology. The mechanisms that promote polarized growth and drive cell cycle progression are complex signaling networks that operate in a wide range of cell types and organisms. Understanding these networks and their molecular connections requires large-scale approaches that define the underlying biochemical reactions. Phosphorylation drives many events in both cell polarity and cell cycle signaling, and protein kinases that act in both processes represent key players in coordinated growth and division.The fission yeast S. pombe has served as a long-standing model organism for studies on cell polarity and the cell cycle. The fission yeast protein kinase Pom1 is an intriguing candidate to function in the coordination of polarized growth and cell cycle progression. This DYRK1 family kinase was originally identified as a polarity mutant (hence the name Pom1) in a genetic screen for misshapen cells (1). Later studies revealed an additional role for Pom1 in cell cycle progression, where it delays mitotic entry until cells reach a critical size threshold (2, 3). Thus, pom1Δ mutant cells display defects in both cell polarity and cell size at mitosis, as well as misplaced division septa (16). Mutations that impair Pom1 kinase activity mimic these deletion phenotypes, indicating a key role for Pom1-dependent phosphorylation. The pleiotropic phenotype of pom1 mutants might result from Pom1 phosphorylating distinct substrates for cell polarity versus mitotic entry, but the targets of Pom1 kinase activity are largely unknown. Only two Pom1 substrates have been identified to date. First, Pom1 auto-phosphorylates as part of a mechanism that promotes localization in a cortical gradient enriched at cell tips (7). Second, Pom1 phosphorylates two regions of the protein kinase Cdr2. Phosphorylation of Cdr2 C terminus is proposed to prevent mitotic entry by inhibiting Cdr2 kinase activity (8, 9), while phosphorylation near membrane-binding motifs of Cdr2 promotes medial cell division by inhibiting localization of Cdr2 at cell tips (10). It has been unclear if Cdr2 represents the only cell cycle target of Pom1 kinase activity, and no cell polarity targets of Pom1 have been identified. In order to clarify how this protein kinase controls multiple cellular processes, we have comprehensively cataloged Pom1 substrates by quantitative phosphoproteomics. Such a large-scale approach also has the potential to reveal general mechanisms that operate in the coordination of cell growth and division.Stable isotope labeling of amino acids in culture (SILAC) combined with phosphopeptide enrichment and mass spectrometry has allowed the proteome-wide analysis of protein phosphorylation from diverse experimental systems (1115). In this approach, cells are grown separately in media containing normal (“light”) or isotope-labeled (“heavy”) arginine and lysine, treated, mixed, and processed for LC-MS/MS analysis. In combination with analog-sensitive protein kinase mutants, which can be rapidly and specifically inhibited by nonhydrolyzable ATP analogs (16, 17), SILAC presents a powerful approach to identify cellular phosphorylation events that depend on a specific protein kinase. This method is particularly well suited for studies in yeast, where analog-sensitive protein kinase mutants can be readily integrated into the genome.In this study, we have employed SILAC-based phosphoproteomics to identify Pom1 substrates in fission yeast. New Pom1 targets were verified as direct substrates in vitro, and our analysis indicates that Pom1 controls cell cycle progression through a single target while coordinating a more complex network of cell polarity targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号