首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   918篇
  免费   143篇
  1061篇
  2021年   9篇
  2016年   19篇
  2015年   23篇
  2014年   24篇
  2013年   38篇
  2012年   38篇
  2011年   47篇
  2010年   21篇
  2009年   15篇
  2008年   35篇
  2007年   38篇
  2006年   28篇
  2005年   27篇
  2004年   49篇
  2003年   26篇
  2002年   26篇
  2001年   21篇
  2000年   19篇
  1999年   19篇
  1998年   11篇
  1997年   14篇
  1996年   11篇
  1995年   12篇
  1994年   12篇
  1993年   11篇
  1992年   22篇
  1991年   24篇
  1990年   13篇
  1989年   24篇
  1988年   22篇
  1987年   20篇
  1986年   11篇
  1985年   22篇
  1984年   13篇
  1983年   16篇
  1982年   15篇
  1981年   14篇
  1980年   14篇
  1979年   17篇
  1978年   13篇
  1977年   15篇
  1976年   17篇
  1975年   15篇
  1974年   16篇
  1973年   10篇
  1971年   8篇
  1969年   9篇
  1968年   15篇
  1967年   8篇
  1966年   8篇
排序方式: 共有1061条查询结果,搜索用时 15 毫秒
131.
A full-length hexokinase cDNA was cloned from Solanum chacoense, a wild relative of the cultivated potato. Analysis of the predicted primary sequence suggested that the protein product, ScHK2, may be targeted to the secretory pathway and inserted in the plant plasma membrane, facing the cytosol. ScHK2 was expressed as a hexahistidine-tagged protein in Escherichia coli. Expression conditions for this construct were optimized using a specific anti-hexokinase polyclonal anti-serum raised against a truncated version of ScHK2. The full-length recombinant protein was purified to electrophoretic homogeneity using immobilized metal ion affinity chromatography followed by anion exchange chromatography on Fractogel EMD DEAE-650 (S). The purified enzyme had a specific activity of 5.3 micromol/min/mg protein. Its apparent Kms for glucose (23 microM), mannose (30 microM), fructose (5.2 mM), and ATP (61 microM) were in good agreement with values found in the literature for other plant hexokinases. Hexahistidine-tagged ScHK2 was highly sensitive to pH variations between 7.7 and 8.7. It was inhibited by ADP and insensitive to glucose-6-phosphate. These findings constitute the first kinetic characterization of a homogeneous plant hexokinase preparation. The relevance of ScHK2 kinetic properties is discussed in relation to the regulation of hexose metabolism in plants.  相似文献   
132.
133.
134.
135.
136.
137.
Abstract.  Armoured scale insects are economically important parasites of woody plants and grasses. They are promising subjects for the evolutionary study of physiology (no complete gut), genetics (chimerism, paternal genome elimination, frequent parthenogenesis) and coevolution (with host plants, parasitoids, Septobasidium fungi, endosymbiotic bacteria). Little phylogenetic work has been accomplished with armoured scales, and uncertainty surrounds their classification. Here, we report the phylogenetic results of Bayesian and parsimony analyses of 705 base pairs of Elongation Factor 1α and 660 base pairs of 28S from eighty-nine species of armoured scale insects, representing forty-seven genera and five tribes in the subfamilies Diaspidinae and Aspidiotinae, together with two outgroups. 28S was aligned based on a secondary structural model. Our results broadly corroborate the major features of the existing classification, although we do not find perfect monophyly of any of the traditionally recognized subfamilies or tribes. The subfamily Aspidiotinae is paraphyletic with respect to the subfamily Diaspidinae. Diaspidinae consists of two main clades that only roughly correspond to the tribes Lepidosaphidini and Diaspidini. Diaspidini is nearly monophyletic, except that it includes a single aspidiotine species. Other members of the tribe Aspidiotini form a clade, except that the clade includes a single species of Leucaspidini and excludes Maskellia and Pseudaonidia . Our results weakly support the hypothesis that the most recent common ancestor of the Diaspididae had adult females that were permanently enclosed within the derm of the second instar (the pupillarial habit) and had diploid adult males that eliminated their paternal genomes during spermatogenesis (late paternal genome elimination).  相似文献   
138.
Recent reports revealed that dendritic cell (DC)–natural killer (NK) cell interaction plays an important role in tumor immunity, but few DC vaccine studies have attempted to evaluate the non-specific, yet potentially clinically relevant, NK response to immunization. In this study, we first analyzed in vitro activation of NK cells by DCs similar to those used in clinical trials. Subsequently, NK cell responses were analyzed in a phase I clinical trial of a vaccine consisting of autologous DCs loaded with a fowlpox vector encoding CEA. The data were compared with the clinical outcome of the patients. DC enhances NK activity in vitro, partly by sustaining NK cell survival and by enhancing the expression of NK-activating receptors, including NKp46 and NKG2D. Among nine patients in our clinical trial, NK cytolytic activity increased in four (range 2.5–5 times greater lytic activity) including three who had increased NK cell frequency, was stable in two and decreased in three. NKp46 and NKG2D expression showed a good correlation with the patients’ NK activity. When patients were grouped by clinical activity (stable disease/no evidence of disease (stable/NE, n=5) vs progressive disease (N=4) at 3 months), the majority in the stable/NE group had increases in NK activity (P=0.016). Anti-CEA T cell response was enhanced in all the nine patients analyzed, but was not significantly different between the two groups (P=0.14). Thus, NK responses following DC vaccination may correlate more closely with clinical outcome than do T cell responses. Monitoring of NK response during vaccine studies should be routinely performed.  相似文献   
139.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号