首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   782篇
  免费   120篇
  2021年   10篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   13篇
  2015年   25篇
  2014年   31篇
  2013年   22篇
  2012年   28篇
  2011年   31篇
  2010年   20篇
  2009年   28篇
  2008年   32篇
  2007年   30篇
  2006年   34篇
  2005年   40篇
  2004年   29篇
  2003年   40篇
  2002年   26篇
  2001年   29篇
  2000年   37篇
  1999年   22篇
  1998年   7篇
  1997年   12篇
  1996年   5篇
  1995年   14篇
  1994年   6篇
  1993年   12篇
  1992年   18篇
  1991年   16篇
  1990年   14篇
  1989年   18篇
  1988年   18篇
  1987年   11篇
  1986年   15篇
  1985年   17篇
  1984年   12篇
  1983年   5篇
  1981年   11篇
  1980年   5篇
  1979年   10篇
  1978年   5篇
  1977年   5篇
  1976年   11篇
  1975年   7篇
  1974年   8篇
  1973年   19篇
  1971年   8篇
  1970年   4篇
  1959年   4篇
排序方式: 共有902条查询结果,搜索用时 15 毫秒
131.
While oxidative stress can induce a heat shock response, the primary signals that initiate activation have not been identified. To identify such signals, HepG2 and V 79 cells were exposed to menadione, a compound that redox-cycles to generate superoxide. The oxidative stress generated by menadione resulted in oxidation of protein thiols in a dose-dependent manner. This was followed by protein destabilization and denaturation, as determined by differential scanning calorimetry of whole cells. To directly evaluate the effect of non-native disulfides on protein conformation, Ca2+-ATPase, isolated from rabbit sarcoplasmic reticulum, was chemically modified to contain non-native intermolecular or glutathione (GHS)-mixed disulfides. Differential scanning calorimetry profiles and 1-anilinonaphthalene-8-sulfonic acid fluorescence indicated that formation of non-native disulfides produced protein destabilization, denaturation, and exposure of hydrophobic domains. Cellular proteins shown to contain oxidized thiols formed detergent-insoluble aggregates. Cells treated with menadione exhibited activation of HSF-1, accumulated Hsp 70 mRNA, and increased synthesis of Hsp 70. This work demonstrates that formation of physiologically relevant, non-native intermolecular and GSH-mixed disulfides causes proteins to destabilize, unfold such that hydrophobic domains are exposed, and initiate a signal for induction of the heat shock response. J. Cell. Physiol. 171:143–151, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
132.
The histological effect on and stress response of post juvenile Clarias gariepinus exposed to Qua Iboe crude oil and rig wash were investigated. Fish weighing 60–90 g and measuring 16–18 cm were exposed for 7–28 days to 8.00 ml?1 Qua Iboe crude oil and 0.0018 ml–1 rig wash, both being 0.1 of the 96 hr LC50. Blood samples of C. gariepinus were collected every seven days and evaluated for stress by measuring cortisol concentration. The gills and liver were studied and scored for Gill Alteration Index (GAI) and Hepatic Alteration Index (HAI), respectively. There was an increase in cortisol level up to the 7th and 14th day among the group exposed to Qua Iboe crude oil, with a decrease on the 21st and 28th day. The rig wash group increased in cortisol level up to the 7th day and decreased slightly on the 14th day, after which the trend became irregular. The toxic effects of the Qua Iboe crude oil and rig wash were time dependent, as shown by the histopathological alteration index (HAI) of gill and liver. After 28 days of exposure, the gills had irreparable damage due to high frequency of cellular necrosis and degeneration, whereas the liver had from moderate to severe damage due to the high frequency of cellular degeneration and inflammation. Qua Iboe crude oil and rig wash are both toxic to C. gariepinus, therefore their indiscriminate discharge to the environment must be discouraged.  相似文献   
133.
Chemorepellents are compounds that cause ciliated protozoans to reorient their swimming direction. A number of chemorepellents have been studied in the ciliated protozoans, Paramecium and Tetrahymena. Chemorepellents, such as polycations, cause the organism to exhibit "avoidance behavior," a swimming behavior characterized by jerky movements and other deviations from normal forward swimming, which result from ciliary reversal. One well-characterized chemorepellent pathway in Tetrahymena is that of the proposed polycation receptor that is activated by lysozyme and pituitary adenylate cyclase activating polypeptide (PACAP). In this study, we compare the response of Paramecium to the chemorepellents lysozyme, vasoactive intestinal peptide (VIP), and PACAP to the previously studied polycation response in Tetrahymena. Our results indicate that lysozyme, VIP, and PACAP are all chemorepellents in Paramecium, just as they are in Tetrahymena. However, the signaling pathways involved appear to be different. While previous pharmacological characterization indicates that G-proteins are involved in polycation signaling in Tetrahymena, we present evidence that similar reception in Paramecium involves activation of a tyrosine kinase pathway in order for lysozyme avoidance to occur. Polycation responses of both organisms are inhibited by neomycin sulfate. While PACAP is the most effective of the three chemorepellents in Tetrahymena, lysozyme is the most effective chemorepellent in Paramecium.  相似文献   
134.
Sphingolipids are key lipid regulators of cell viability: ceramide is one of the key molecules in inducing programmed cell death (apoptosis), whereas other sphingolipids, such as ceramide 1-phosphate, are mitogenic. The thermotropic and structural behavior of binary systems of N-hexadecanoyl-D-erythro-ceramide (C16-ceramide) or N-hexadecanoyl-D-erythro-ceramide-1-phosphate (C16-ceramide-1-phosphate; C16-C1P) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with DSC and deuterium nuclear magnetic resonance (2H-NMR). Partial-phase diagrams (up to a mole fraction of sphingolipids X = 0.40) for both mixtures were constructed based on DSC and 2H-NMR observations. For C16-ceramide-containing bilayers DSC heating scans showed already at Xcer = 0.025 a complex structure of the main-phase transition peak suggestive of lateral-phase separation. The transition width increased significantly upon increasing Xcer, and the upper-phase boundary temperature of the mixture shifted to ∼65°C at Xcer = 0.40. The temperature range over which 2H-NMR spectra of C16-ceramide/DPPC-d62 mixtures displayed coexistence of gel and liquid crystalline domains increased from ∼10° for Xcer = 0.1 to ∼21° for Xcer = 0.4. For C16-C1P/DPPC mixtures, DSC and 2H-NMR observations indicated that two-phase coexistence was limited to significantly narrower temperature ranges for corresponding C1P concentrations. To complement these findings, C16-ceramide/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and C16-C1P/POPC mixtures were also studied by 2H-NMR and fluorescence techniques. These observations indicate that DPPC and POPC bilayers are significantly less perturbed by C16-C1P than by C16-ceramide and that C16-C1P is miscible within DPPC bilayers at least up to XC1P = 0.30.  相似文献   
135.
According to the genic capture hypothesis, the maintenance of additive genetic variation in fitness-related traits is due to both condition-dependence of these traits and high genetic variation for condition. Evidence supporting this latter assumption is scarce. In this study, we investigated, using hemiclonal analysis, standing genetic variation for condition and relative adult fitness in male Drosophila melanogaster (Meigen) (Diptera: Drosophilidae). The absolute fat and the relative fat content were used as indices of body condition and were measured along with adult relative fitness from males reared in high or low larval densities. The results did not demonstrate genetic variation for condition or adult relative fitness. However, the larval density encountered during development had a strong and significant effect on all traits. Surprisingly, although not significant, negative selection gradients acting on absolute fat and relative fat content were also found in both treatments. These findings challenge one of the main assumptions of the genic capture hypothesis and the use of fat content as an ideal index of condition.  相似文献   
136.
Stroke is the third leading cause of death in the United States, yet no neuroprotective agents for treatment are clinically available. There is a pressing need to understand the signaling molecules that mediate ischemic cell death and identify novel neuroprotective targets. Cyclopentenone isoprostanes (IsoPs), formed after free radical-mediated peroxidation of arachidonic acid, are used as markers of stress, but their bioactivity is poorly understood. We have recently shown that 15-A2t-IsoP is a potent neurotoxin in vitro and increases the free radical burden in neurons. In this work, we demonstrate that 15-A2t-IsoP is abundantly produced in stroke-infarcted human cortical tissue. Using primary neuronal cultures we found that minimally toxic exposure to 15-A2t-IsoP does not alter ATP content, but in combination with oxygen glucose deprivation resulted in a significant hyperpolarization of the mitochondrial membrane and dramatically increased neuronal cell death. In the presence of Ca2+, 15-A2t-IsoP led to a rapid induction of the permeability transition pore and release of cytochrome c. Taken with our previous work, these data support a model in which ischemia causes generation of reactive oxygen species, calcium influx, lipid peroxidation, and 15-A2t-IsoP formation. These factors combine to enhance opening of the permeability transition pore leading to cell death subsequent to mitochondrial cytochrome c release. These data are the first documentation of significant 15-A2t-IsoP formation after acute ischemic stroke and suggest that the addition of 15-A2t-IsoP to in vitro models of ischemia may help to more fully recapitulate stroke injury.  相似文献   
137.
Humic substances (HS) have been reported to possess anti-inflammatory as well as pro-inflammatory properties. The anti-inflammatory activity was demonstrated in the rat paw edema model and we found a preliminary explanation in the 5-lipoxygenase inhibitory effect of humic acids (HA). The pro-inflammatory activity is reflected by the production and release of pro-inflammatory cytokines in HA-treated neutrophilic granulocytes. With regard to the potential use of HA as antiviral and UV-protective agents it appears advisable to investigate the role of HS in the inflammation process in more detail. Hence we tested four different HS preparations – two naturally occurring HA from the Altteich peatland in Germany, one fulvic acid (FA) preparation from a Finnish spruce forest and a synthetic HA-like polymer (caffeic acid oxidation product, KOP) for their influence on the lipopolysaccharide (LPS)-induced TNF-α release in human U937 cells. In addition, the cytotoxicity of HS was determined.The results demonstrate a concentration-dependent bimodal effect of HA on the TNF-α release of differentiated LPS-stimulated U937 cells for both the natural black peat HA from the Altteich peatland and the HA-like polymer KOP. Low HA concentrations (10–80 μg/ml) enhanced the TNF-α release by up to threefold (pro-inflammatory activity), while HA concentrations >100 μg/ml reduced it about 10-fold (anti-inflammatory activity). FA failed to enhance TNF-α release, but reduced it at higher concentrations (>200 μg/ml) by the half. Brown water HA did not exert any significant effect on TNF-α release. No HS-stimulated TNF-α release was also observed in the absence of exogenously supplied LPS. This means that HS, unlike endotoxin, are no inflammation-causing agents for LPS-untreated cells. Differences in the effect of individual HS on TNF-α release are discussed in connection with the polyanionic character of HS, their molecular mass distribution and the hitherto imperfectly known chemical structure.  相似文献   
138.
139.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   
140.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号