首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2500篇
  免费   352篇
  国内免费   4篇
  2021年   36篇
  2019年   24篇
  2018年   27篇
  2016年   54篇
  2015年   83篇
  2014年   98篇
  2013年   98篇
  2012年   123篇
  2011年   111篇
  2010年   70篇
  2009年   67篇
  2008年   89篇
  2007年   103篇
  2006年   82篇
  2005年   98篇
  2004年   90篇
  2003年   85篇
  2002年   71篇
  2001年   81篇
  2000年   61篇
  1999年   73篇
  1998年   32篇
  1997年   26篇
  1996年   30篇
  1995年   26篇
  1994年   28篇
  1993年   27篇
  1992年   54篇
  1991年   49篇
  1990年   52篇
  1989年   47篇
  1988年   42篇
  1987年   38篇
  1986年   39篇
  1985年   45篇
  1984年   35篇
  1983年   37篇
  1982年   25篇
  1981年   24篇
  1980年   24篇
  1979年   39篇
  1978年   29篇
  1977年   30篇
  1976年   31篇
  1975年   22篇
  1974年   33篇
  1973年   33篇
  1972年   29篇
  1971年   35篇
  1966年   32篇
排序方式: 共有2856条查询结果,搜索用时 15 毫秒
981.
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.  相似文献   
982.
The signaling mechanisms that regulate CLC anion channels are poorly understood. Caenorhabditis elegans CLH-3b is a member of the CLC-1/2/Ka/Kb channel subfamily. CLH-3b is activated by meiotic cell-cycle progression and cell swelling. Inhibition is brought about by GCK-3 kinase-mediated phosphorylation of S742 and S747 located on a ∼176 amino acid disordered domain linking CBS1 and CBS2. Much of the inter-CBS linker is dispensable for channel regulation. However, deletion of a 14 amino acid activation domain encompassing S742 and S747 inhibits channel activity to the same extent as GCK-3. The crystal structure of CmCLC demonstrated that CBS2 interfaces extensively with an intracellular loop connecting membrane helices H and I, the C-terminus of helix D, and a short linker connecting helix R to CBS1. Point mutagenesis of this interface identified two highly conserved aromatic amino acid residues located in the H-I loop and the first α-helix (α1) of CBS2. Mutation of either residue to alanine rendered CLH-3b insensitive to GCK-3 inhibition. We suggest that the dephosphorylated activation domain normally interacts with CBS1 and/or CBS2, and that conformational information associated with this interaction is transduced through a conserved signal transduction module comprising the H-I loop and CBS2 α1.  相似文献   
983.
Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.  相似文献   
984.
985.
Allogeneic hematopoietic stem cell transplantation (HSCT) use has expanded markedly to treat different disorders like hematologic malignancies, immunodeficiency, and inborn errors of metabolism. However, it is commonly associated with complications that limit the benefit of this therapy. Acute renal failure occurs commonly after HSCT and results in increased risk of mortality. In many instances, children post-HSCT develop acute renal insufficiency in the context of other organ failure, necessitating intensive care unit admission for management. Recently, continuous renal replacement therapy (CRRT) has emerged as the favored modality of renal replacement therapy in the care of critically ill children who are hemodynamically unstable. Currently, CRRT is being utilized more often in the care of critically ill post- HSCT children to treat renal failure or to prevent fluid overload (FO). FO > 20% has been shown in many studies to be an independent risk of mortality in critically ill children and therefore, many clinicians will initiate this therapy due to FO even without overt renal failure. CRRT may be beneficial in disease processes as acute lung injury due to removal of fluid. CRRT results in improved oxygenation in post-HSCT children with acute lung injury and this improvement is sustained for at least 48 hours after initiation of this therapy. Survival in post-HSCT children requiring this therapy ranges from 17% to 45%, however, long term survival is still poor. This review will discuss current practice of CRRT in children post-HSCT, as well as future directions.  相似文献   
986.
Corporal smooth muscle (CSM) tone is maintained by a finite balance between relaxant and contractile neurotransmitters. The aim of these experiments was to ascertain the degree to which cyclic GMP is involved in these interactions. We also sought to elucidate the pharmacological mechanism of action of MB in rabbit corpus cavernosum (RCC), an important tool in nitric oxide research. Using an organ chamber technique, strips of RCC were treated with the guanylate cyclase inhibitors Methylene Blue (MB) and LY83583; 100 microM MB led to increases in resting tension which were antagonized by indomethacin, nifedipine, phentolamine, but not superoxide dismutase (SOD). Contractile responses to noradrenaline (NA) were increased and relaxation to ACh was impaired by both MB and LY83583 and reversed with indomethacin, but not SOD. Pyrogallol had no effect on agonist-induced responses. The pharmacological action of MB in RCC does not depend on the generation of superoxide anions. Endothelium-dependent relaxation in RCC results in activation of soluble guanylate cyclase and release of a stable endothelium derived contracting factor(s), which is likely to be a constrictor prostanoid(s). Tonic production of cGMP in RCC inhibits the presynaptic release and contractile effects of NA and can be modulated by cyclo-oxygenase inhibition, demonstrating the important interaction and functional antagonism between cGMP and prostaglandins in the control of CSM tone.  相似文献   
987.
We have previously shown that inhibition of phosphatidylinositol (PI) 3-kinase severely attenuates the activation of extracellular signal-regulated kinase (Erk) following engagement of integrin/fibronectin receptors and that Raf is the critical target of PI 3-kinase regulation [1]. To investigate how PI 3-kinase regulates Raf, we examined sites on Raf1 required for regulation by PI 3-kinase and explored the mechanisms involved in this regulation. Serine 338 (Ser338), which was critical for fibronectin stimulation of Raf1, was phosphorylated in a PI 3-kinase-dependent manner following engagement of fibronectin receptors. In addition, fibronectin activation of a Raf1 mutant containing a phospho-mimic mutation (S338D) was independent of PI 3-kinase. Furthermore, integrin-induced activation of the serine/threonine kinase Pak-1, which has been shown to phosphorylate Raf1 Ser338, was also dependent on PI 3-kinase activity and expression of a kinase-inactive Pak-1 mutant blocked phosphorylation of Raf1 Ser338. These results indicate that PI 3-kinase regulates phosphorylation of Raf1 Ser338 through the serine/threonine kinase Pak. Thus, phosphorylation of Raf1 Ser338 through PI 3-kinase and Pak provides a co-stimulatory signal which together with Ras leads to strong activation of Raf1 kinase activity by integrins.  相似文献   
988.
BACKGROUND: Kinase Suppressor of Ras (KSR) is a conserved component of the Ras pathway that acts as a molecular scaffold to facilitate signal transmission through the MAPK cascade. Although recruitment of KSR1 from the cytosol to the plasma membrane is required for its scaffolding function, the precise mechanism(s) regulating the translocation of KSR1 have not been fully elucidated. RESULTS: Using mass spectrometry to analyze the KSR1-scaffolding complex, we identify the serine/threonine protein phosphatase PP2A as a KSR1-associated protein and show that PP2A is a critical regulator of KSR1 activity. We find that the enzymatic core subunits of PP2A (PR65A and catalytic C) constitutively associate with the N-terminal domain of KSR1, whereas binding of the regulatory PR55B subunit is induced by growth factor treatment. Specific inhibition of PP2A activity prevents the growth factor-induced dephosphorylation event involved in the membrane recruitment of KSR1 and blocks the activation of KSR1-associated MEK and ERK. Moreover, we find that PP2A activity is required for activation of the Raf-1 kinase and that both Raf and KSR1 must be dephosphorylated by PP2A on critical regulatory 14-3-3 binding sites for KSR1 to promote MAPK pathway activation. CONCLUSIONS: These findings identify KSR1 as novel substrate of PP2A and demonstrate the inducible dephosphorylation of KSR1 in response to Ras pathway activation. Further, these results elucidate a common regulatory mechanism for KSR1 and Raf-1 whereby their localization and activity are modulated by the PP2A-mediated dephosphorylation of critical 14-3-3 binding sites.  相似文献   
989.
Many diabetic individuals develop anosmia but the mechanism(s) causing the dysfunction in the olfactory system is (are) unknown. Glial fibrillary acidic protein expression is reduced in diabetic retinopathy and is also reduced, with unknown consequences, in other brain regions of diabetic rats. We used immunohistochemistry and immunoblotting from untreated control and streptozotocin-induced type 1 (insulin dependent) diabetic rats to investigate main olfactory epithelial mitotic rate and glial fibrillary acidic protein expression in the lamina propria of the sensory epithelium and in the olfactory bulb. Numbers of bromodeoxyuridine-positive cells were significantly lower in the diabetic sensory epithelium compared to non-diabetic controls. Immunohistochemical observations suggested a qualitative difference in glial fibrillary acidic protein expression in both regions examined especially in the olfactory bulb external plexiform layer and the lamina propria. Immunoblot analysis confirmed that the diabetic olfactory bulb and lamina propria expressed less glial fibrillary acidic protein compared to the non-diabetic control group. The lower expression levels in the olfactory bulb external plexiform layer suggested by immunohistochemistry do not reflect a change in the number of astrocytes since the numbers of S100B(+) cells were not different between the two groups.  相似文献   
990.
Alphaviruses such as Ross River virus (RRV) and chikungunya virus are mosquito-transmitted viruses that cause explosive epidemics of debilitating arthritis and myositis affecting millions of humans worldwide. Previous studies using a mouse model of RRV-induced disease demonstrated that viral infection results in a severe inflammatory arthritis and myositis and that complement component 3 (C3) contributes to the destructive phase of the inflammatory disease but not the recruitment of cellular infiltrates to the sites of RRV-induced inflammation. Here, we demonstrate that mice deficient in complement receptor 3 (CR3) (CD11b−/−), a signaling receptor activated by multiple ligands including the C3 cleavage fragment iC3b, develop less-severe disease signs and decreased tissue destruction compared to RRV-infected wild-type mice. CR3 deficiency had no effect on viral replication, nor did it diminish the magnitude, kinetics, and composition of the cellular infiltrates at the sites of inflammation. However, the genetic absence of CR3 diminished the expression of specific proinflammatory and cytotoxic effectors, including S100A9/S100A8 and interleukin-6, within the inflamed tissues, suggesting that CR3-dependent signaling at the sites of inflammation contributes to tissue damage and severe disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号