首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1387篇
  免费   129篇
  国内免费   1篇
  1517篇
  2023年   12篇
  2022年   17篇
  2021年   43篇
  2020年   28篇
  2019年   36篇
  2018年   27篇
  2017年   32篇
  2016年   52篇
  2015年   80篇
  2014年   86篇
  2013年   83篇
  2012年   149篇
  2011年   102篇
  2010年   64篇
  2009年   52篇
  2008年   56篇
  2007年   62篇
  2006年   45篇
  2005年   42篇
  2004年   32篇
  2003年   36篇
  2002年   26篇
  2001年   31篇
  2000年   22篇
  1999年   14篇
  1998年   21篇
  1997年   16篇
  1996年   13篇
  1995年   11篇
  1994年   13篇
  1993年   18篇
  1992年   16篇
  1991年   12篇
  1990年   16篇
  1989年   13篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1982年   4篇
  1981年   4篇
  1978年   4篇
  1977年   4篇
  1971年   5篇
  1887年   6篇
  1886年   6篇
  1885年   8篇
  1883年   8篇
  1882年   4篇
  1875年   6篇
排序方式: 共有1517条查询结果,搜索用时 15 毫秒
11.
Low glomerular (nephron) endowment has been associated with an increased risk of cardiovascular and renal disease in adulthood. Nephron endowment in humans is determined by 36 wk of gestation, while in rats and mice nephrogenesis ends several days after birth. Specific genes and environmental perturbations have been shown to regulate nephron endowment. Until now, design-based method for estimating nephron number in developing kidneys was unavailable. This was due in part to the difficulty associated with unambiguously identifying developing glomeruli in histological sections. Here, we describe a method that uses lectin histochemistry to identify developing glomeruli and the physical disector/fractionator principle to provide unbiased estimates of total glomerular number (N(glom)). We have characterized N(glom) throughout development in kidneys from 76 rats and model this development with a 5-parameter logistic equation to predict N(glom) from embryonic day 17.25 to adulthood (r(2) = 0.98). This approach represents the first design-based method with which to estimate N(glom) in the developing kidney.  相似文献   
12.
Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption. The Qtag is attached to the peptide during synthesis and is removed by tryptic digestion under standard proteomics workflow conditions. While one quantification method (method A) is designed to allow the fast and economic production of absolutely quantified SIL peptides, two other methods (methods B and C) are developed to enable the straightforward re‐quantification of SIL peptides after reconstitution to control and monitor known problems related to peptide solubility, precipitation, and adhesion to vials. All methods yield consistent results when compared to each other and when compared to quantification by amino acid analysis. The precise quantitation methods are used to characterize the in vivo specificity of the H3 specific histone methyltransferase EZH2.  相似文献   
13.
Although the relevance of three-dimensional (3-D) culture has been recognized for years and exploited at an academic level, its translation to industrial applications has been slow. The development of reliable high-throughput technologies is clearly a prerequisite for the industrial implementation of 3-D models. In this study the robustness of spherical microtissue production and drug testing in a 96-well hanging-drop multiwell plate format was assessed on a standard 96-well channel robotic platform. Microtissue models derived from six different cell lines were produced and characterized according to their growth profile and morphology displaying high-density tissue-like reformation and growth over at least 15 days. The colon cancer cell line HCT116 was chosen as a model to assess microtissue-based assay reproducibility. Within three individual production batches the size variations of the produced microtissues were below 5%. Reliability of the microtissue-based assay was tested using two reference compounds, staurosporine and chlorambucil. In four independent drug testings the calculated IC(50) values were benchmarked against 2-D multiwell testings displaying similar consistency. The technology presented here for the automated production of a variety of microtissues for efficacy testing in a standard 96-well format will aid the implementation of more organotypic models at an early time point in the drug discovery process.  相似文献   
14.
The induction of flowering by one long day (LD) in the grass Lolium temulentum is most closely mimicked by application of the gibberellins (GAs) GA(5) or GA(6), both of which occur naturally. These gibberellins promote floral development but have little effect on stem elongation. Endogenous GA(5) and GA(6) contents in the shoot apex double on the day after the LD and, for GA(5) (and we presume for GA(6) as well) reach a concentration known to be inductive for the excised shoot apex in vitro. They are, therefore, strong candidates as LD floral stimuli in this grass. The synthesis of GA(6) and an examination of its florigenic properties in L. temulentum are described.  相似文献   
15.
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.  相似文献   
16.
Oligodendrocyte progenitor cells (OPCs) were first described more than two decades ago. Novel labeling techniques have shown them to be cells with more than just progenitor functions, with their classification as a fourth glial cell type in addition to astrocytes, oligodendrocytes, and microglial cells. Another term used for this cell type is polydendrocytes, owing to both their morphology and to the evolving knowledge about their diverse functions. Recently, an exclusive hallmark of neurons—the generation of action potentials—became debatable, because a subset of polydendrocytes was reported to generate action potentials in response to adequate stimuli. The new technique of inducible reporter gene expression has brought new insights into the fate and function of polydendrocytes. In recent studies, so-called “silenced” OPCs were detected in cortical tissue, and which underwent proliferation with subsequent cell cycle exit, but without any signs of differentiation. Within this review, we focus on the identification of this new subset of polydendrocytes and their possible functions within cortical networks.  相似文献   
17.
In rats, maternal protein restriction reduces nephron endowment and often leads to adult hypertension. Sex differences in these responses have been identified. The molecular and genetic bases of these phenomena can best be identified in a mouse model, but effects of maternal protein restriction on kidney development have not been examined in mice. Therefore, we determined how combined prenatal and postnatal protein restriction in mice affects organ weight, glomerular number and dimensions, and renal expression of angiotensin receptor mRNA, in both male and female offspring. C57/BL6/129sv mice received either a normal (20% wt/wt; NP) or low (9% wt/wt; LP) protein diet during gestation and postnatal life. Offspring were examined at postnatal day 30. Protein restriction retarded growth of the kidney, liver, spleen, heart, and brain. All organs except the brain weighed less in female than male offspring. Protein restriction increased normalized (to body weight) brain weight, with females having relatively heavier brains than males. The effects of protein restriction were not sex dependent, except that normalized liver weight was reduced in males but increased in females. Glomerular volume, but not number, was greater in female than in male mice. Maternal protein restriction reduced nephron endowment similarly in male and female mice. Renal expression of AT(1A) receptor mRNA was approximately sixfold greater in female than male NP mice, but similar in male LP and female LP mice. We conclude that maternal protein restriction reduces nephron endowment in mice. This effect provides a basis for future studies of developmental programming in the mouse.  相似文献   
18.
Among root knot nematodes of the genus Meloidogyne, the polyploid obligate mitotic parthenogens M. arenaria, M. javanica, and M. incognita are widespread and common agricultural pests. Although these named forms are distinguishable by closely related mitochondrial DNA (mtDNA) haplotypes, detailed sequence analyses of internal transcribed spacers (ITSs) of nuclear ribosomal genes reveal extremely high diversity, even within individual nematodes. This ITS diversity is broadly structured into two very different groups that are 12%-18% divergent: one with low diversity (< 1.0%) and one with high diversity (6%-7%). In both of these groups, identical sequences can be found within individual nematodes of different mtDNA haplotypes (i.e., among species). Analysis of genetic variance indicates that more than 90% of ITS diversity can be found within an individual nematode, with small but statistically significant (5%-10%; P < 0.05) variance distributed among mtDNA lineages. The evolutionarily distinct parthenogen M. hapla shows a similar pattern of ITS diversity, with two divergent groups of ITSs within each individual. In contrast, two diploid amphimictic species have only one lineage of ITSs with low diversity (< 0.2%). The presence of divergent lineages of rDNA in the apomictic taxa is unlikely to be due to differences among pseudogenes. Instead, we suggest that the diversity of ITSs in M. arenaria, M. javanica, and M. incognita is due to hybrid origins from closely related females (as inferred from mtDNA) and combinations of more diverse paternal lineages.  相似文献   
19.
Acoustic signals transmit information by temporal characteristics and envelope periodicity as well as by their frequency content. Many animals can extract the frequency content of a signal by means of specialized organs such as the cochlea but for the detection and identification of higher-order periodicity, e.g., amplitude modulations, this type of organ is useless. In addition, many animals do not have a cochlea but still depend on a reliable identification of different frequencies in the vast variety of acoustic signals they perceive in their natural environment. Hence, neural mechanisms to decode periodicity information must exist. We present a detailed mathematical analysis of a recurrent and a feedforward model of neuronal periodicity extraction and discuss basic constraints for neuronal circuitry performing such a task in a biological system. Both the recurrent and the feedforward model perform well using neuronal parameters typical for the auditory system. Performance is limited mainly by the temporal precision of the connections between the neurons.  相似文献   
20.
Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host–microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号