首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1278篇
  免费   114篇
  1392篇
  2024年   4篇
  2023年   12篇
  2022年   17篇
  2021年   40篇
  2020年   28篇
  2019年   36篇
  2018年   25篇
  2017年   27篇
  2016年   46篇
  2015年   75篇
  2014年   82篇
  2013年   79篇
  2012年   143篇
  2011年   97篇
  2010年   55篇
  2009年   44篇
  2008年   48篇
  2007年   56篇
  2006年   42篇
  2005年   40篇
  2004年   30篇
  2003年   32篇
  2002年   25篇
  2001年   26篇
  2000年   21篇
  1999年   13篇
  1998年   11篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   13篇
  1992年   17篇
  1991年   12篇
  1990年   16篇
  1989年   14篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1971年   5篇
  1887年   6篇
  1886年   6篇
  1885年   8篇
  1884年   3篇
  1883年   8篇
  1882年   4篇
  1875年   6篇
  1874年   3篇
排序方式: 共有1392条查询结果,搜索用时 9 毫秒
51.
The cultivation of perennial wild plant mixtures (WPMs) in biogas cropping systems dominated by maize (Zea mays L.) restores numerous ecosystem functions and improves both spatial and temporal agrobiodiversity. In addition, the colorful appearance of WPM can help enhance landscape beauty. However, their methane yield per hectare (MYH) varies greatly and amounts to only about 50% that of maize. This study aimed at decreasing MYH variability and increasing accumulated MYH of WPM by optimizing the establishment method. A field trial was established in southwest Germany in 2014, and is still running. It tested the effects of three WPM establishment procedures (E1: alone [without maize, in May], E2: undersown in cover crop maize [in May], E3: WPM sown after whole‐crop harvest of spring barley [Hordeum vulgare L.] in June) on both MYH and species diversity of two WPMs [S1, S2]). Mono‐cropped maize and cup plant (Silphium perfoliatum L.) were used as reference crops. Of the WPM treatments tested, S2E2 achieved the highest (19,296 , 60.5% of maize) and S1E1 the lowest accumulated MYH (8,156 , 25.6% of maize) in the years 2014–2018. Cup plant yielded slightly higher than S2E2 (19,968 , 62.6% of maize). In 2014, the WPM sown under maize did not significantly affect the cover crop performance. From 2015 onward, E1 and E2 had comparable average annual MYH and average annual number of WPM species. With a similar accumulated MYH but significantly higher number of species (3.5–10.2), WPM S2E2 outperformed cup plant. Overall, the long‐term MYH performance of WPM cultivation for biogas production can be significantly improved by undersowing with maize as cover crop. This improved establishment method could help facilitate the implementation of WPM cultivation for biogas production and thus reduce the trade‐off between bioenergy and biodiversity.  相似文献   
52.
53.
The mitochondrial contact site and cristae organization system (MICOS) mediates the formation of cristae, invaginations in the mitochondrial inner membrane. The highly diverged MICOS complex of the parasitic protist Trypanosoma brucei consists of nine subunits. Except for two Mic10‐like and a Mic60‐like protein, all subunits are specific for kinetoplastids. Here, we determined on a proteome‐wide scale how ablation of individual MICOS subunits affects the levels of the other subunits. The results reveal co‐regulation of TbMic10‐1, TbMic10‐2, TbMic16 and TbMic60, suggesting that these nonessential, integral inner membrane proteins form an interdependent network. Moreover, the ablation of TbMic34 and TbMic32 reveals another network consisting of the essential, intermembrane space‐localized TbMic20, TbMic32, TbMic34 and TbMic40, all of which are peripherally associated with the inner membrane. The downregulation of TbMic20, TbMic32 and TbMic34 also interferes with mitochondrial protein import and reduces the size of the TbMic10‐containing complexes. Thus, the diverged MICOS of trypanosomes contains two subcomplexes: a nonessential membrane‐integrated one, organized around the conserved Mic10 and Mic60, that mediates cristae formation, and an essential membrane‐peripheral one consisting of four kinetoplastid‐specific subunits, that is required for import of intermembrane space proteins.  相似文献   
54.
Social insect colonies possess a range of defences which protect them against highly virulent parasites and colony collapse. The host–parasite interaction between honey bees (Apis mellifera) and the mite Varroa destructor is unusual, as honey bee colonies are relatively poorly defended against this parasite. The interaction has existed since the mid‐20th Century, when Varroa switched host to parasitize A. mellifera. The combination of a virulent parasite and relatively naïve host means that, without acaricides, honey bee colonies typically die within 3 years of Varroa infestation. A consequence of acaricide use has been a reduced selective pressure for the evolution of Varroa resistance in honey bee colonies. However, in the past 20 years, several natural‐selection‐based breeding programmes have resulted in the evolution of Varroa‐resistant populations. In these populations, the inhibition of Varroa's reproduction is a common trait. Using a high‐density genome‐wide association analysis in a Varroa‐resistant honey bee population, we identify an ecdysone‐induced gene significantly linked to resistance. Ecdysone both initiates metamorphosis in insects and reproduction in Varroa. Previously, using a less dense genetic map and a quantitative trait loci analysis, we have identified Ecdysone‐related genes at resistance loci in an independently evolved resistant population. Varroa cannot biosynthesize ecdysone but can acquire it from its diet. Using qPCR, we are able to link the expression of ecdysone‐linked resistance genes to Varroa's meals and reproduction. If Varroa co‐opts pupal compounds to initiate and time its own reproduction, mutations in the host's ecdysone pathway may represent a key selection tool for honey bee resistance and breeding.  相似文献   
55.
Theory predicts that resource variability hinders consumer performance. How this effect depends on the temporal structure of resource fluctuations encountered by individuals remains poorly understood. Combining modelling and growth experiments with Daphnia magna, we decompose the complexity of resource fluctuations and test the effect of resource variance, supply peak timing (i.e. phase) and co‐limiting resource covariance along a gradient from high to low frequencies reflecting fine‐ to coarse‐grained environments. Our results show that resource storage can buffer growth at high frequencies, but yields a sensitivity of growth to resource peak timing at lower ones. When two resources covary, negative covariance causes stronger growth depression at low frequencies. However, negative covariance might be beneficial at intermediate frequencies, an effect that can be explained by digestive acclimation. Our study provides a mechanistic basis for understanding how alterations of the environmental grain size affect consumers experiencing variable nutritional quality in nature.  相似文献   
56.
The downstream process development of novel antibodies (Abs) is often challenged by virus filter fouling making a better understanding of the underlying mechanisms highly desirable. The present study combines the protein characterization of different feedstreams with their virus filtration performance using a novel high throughput filtration screening system. Filtration experiments with Ab concentrations of up to 20 g/L using either low interacting or hydrophobically interacting pre-filters indicate the existence of two different fouling mechanisms, an irreversible and a reversible one. At the molecular level, size exclusion chromatography revealed that the presence of large amount of high molecular weight species—considered as irreversible aggregates—correlates with irreversible fouling that caused reduced Ab throughput. Results using dynamic light scattering show that a concentration dependent increase of the mean hydrodynamic diameter to the range of dimers (17 nm at 20 g/L) together with a negative DLS interaction parameter kD (−18 mL/g) correlate with the propensity to form reversible aggregates and to cause reversible fouling, probably by a decelerated Ab transport velocity within the virus filter. The two fouling mechanisms are further supported by buffer flush experiments. Finally, concepts for reversible and irreversible fouling mechanisms are discussed together with strategies for respective fouling mitigation. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2776, 2019.  相似文献   
57.
58.
As haematopoietic stem cell gene therapy utilizing O(6)-methylguanine-DNA-methyltransferase has reached the clinical stage, safety-related questions become increasingly important. These issues concern insertional mutagenesis of viral vectors, the acute toxicity of pre-transplant conditioning protocols and in vivo selection regimens as well as potential genotoxic side effects of the alkylating drugs administered in this context. To address these questions, we have investigated toxicity-reduced conditioning regimens combining low-dose alkylator application with sublethal irradiation and have analysed their influence on engraftment and subsequent selectability of transduced haematopoietic stem cells. In addition, a strategy to monitor the acute and long-term genotoxic effects of drugs with high guanine-O(6) alkylating potential, such as chloroethylnitrosoureas or temozolomide is introduced. For this purpose, assays were implemented which allow an assessment of the generation and fate of primary drug-induced adducts as well as their long-term effect on chromosomal integrity at the single cell level.  相似文献   
59.
Mycobacterium tuberculosis, along with other actinobacteria, harbours proteasomes in addition to members of the general bacterial repertoire of degradation complexes. In analogy to ubiquitination in eukaryotes, substrates are tagged for proteasomal degradation with prokaryotic ubiquitin‐like protein (Pup) that is recognized by the N‐terminal coiled‐coil domain of the ATPase Mpa (also called ARC). Here, we reconstitute the entire mycobacterial proteasome degradation system for pupylated substrates and establish its mechanistic features with respect to substrate recruitment, unfolding and degradation. We show that the Mpa–proteasome complex unfolds and degrades Pup‐tagged proteins and that this activity requires physical interaction of the ATPase with the proteasome. Furthermore, we establish the N‐terminal region of Pup as the structural element required for engagement of pupylated substrates into the Mpa pore. In this process, Mpa pulls on Pup to initiate unfolding of substrate proteins and to drag them toward the proteasome chamber. Unlike the eukaryotic ubiquitin, Pup is not recycled but degraded with the substrate. This assigns a dual function to Pup as both the Mpa recognition element as well as the threading determinant.  相似文献   
60.
To study rhodopsin biosynthesis and transport in vivo, we engineered a fusion protein (rho-GFP) of bovine rhodopsin (rho) and green fluorescent protein (GFP). rho-GFP expressed in COS-1 cells bound 11-cis retinal, generating a pigment with spectral properties of rhodopsin (A(max) at 500 nm) and GFP (A(max) at 488 nm). rho-GFP activated transducin at 50% of the wild-type activity, whereas phosphorylation of rho-GFP by rhodopsin kinase was 10% of wild-type levels. We expressed rho-GFP in the rod photoreceptors of Xenopus laevis using the X. laevis principal opsin promoter. Like rhodopsin, rho-GFP localized to rod outer segments, indicating that rho-GFP was recognized by membrane transport mechanisms. In contrast, a rho-GFP variant lacking the C-terminal outer segment localization signal distributed to both outer and inner segment membranes. Confocal microscopy of transgenic retinas revealed that transgene expression levels varied between cells, an effect that is probably analogous to position-effect variegation. Furthermore, rho-GFP concentrations varied along the length of individual rods, indicating that expression levels varied within single cells on a daily or hourly basis. These results have implications for transgenic models of retinal degeneration and mechanisms of position-effect variegation and demonstrate the utility of rho-GFP as a probe for rhodopsin transport and temporal regulation of promoter function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号