首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7303篇
  免费   544篇
  2021年   88篇
  2019年   63篇
  2018年   78篇
  2017年   83篇
  2016年   118篇
  2015年   187篇
  2014年   224篇
  2013年   373篇
  2012年   317篇
  2011年   355篇
  2010年   252篇
  2009年   248篇
  2008年   326篇
  2007年   354篇
  2006年   319篇
  2005年   325篇
  2004年   362篇
  2003年   327篇
  2002年   279篇
  2001年   300篇
  2000年   291篇
  1999年   262篇
  1998年   102篇
  1997年   73篇
  1996年   65篇
  1995年   61篇
  1994年   53篇
  1993年   61篇
  1992年   131篇
  1991年   142篇
  1990年   134篇
  1989年   123篇
  1988年   113篇
  1987年   128篇
  1986年   104篇
  1985年   88篇
  1984年   69篇
  1983年   44篇
  1982年   50篇
  1981年   48篇
  1979年   55篇
  1978年   52篇
  1977年   56篇
  1974年   52篇
  1973年   57篇
  1972年   39篇
  1971年   38篇
  1970年   38篇
  1969年   47篇
  1968年   47篇
排序方式: 共有7847条查询结果,搜索用时 375 毫秒
951.
We previously reported the production of human erythropoietin (hEpo) using genetically manipulated (GM) chickens. The recombinant hEpo was produced in the serum and egg white of the GM chickens, and the oligosaccharide chain structures of the serum-derived hEpo were more favorable than those of the egg white-derived hEpo. In the present study, a retroviral vector encoding an expression cassette for a fusion protein of hEpo and the Fc region of human immunoglobulin G (hEpo/Fc) was injected into developing chicken embryos, with the aim of recovering the serum-derived hEpo from egg yolk through the yolk accumulation mechanism of maternal antibodies. The GM chickens that hatched stably produced the hEpo/Fc fusion protein not only in their serum and egg white, but also in the egg yolk as expected. Lectin blot analyses revealed that significant amounts of the oligosaccharide chains of hEpo/Fc produced in the serum and eggs of GM chickens terminated with galactose, and that the oligosaccharide chains of the serum- and yolk-derived hEpo/Fc incorporated sialic acid residues. Moreover, biological activity assessment using Epo-dependent cells revealed that the yolk-derived hEpo/Fc exhibited a comparable performance to the serum- and CHO-derived hEpo/Fc. These results indicate that transport of Fc fusion proteins from the blood circulation to the yolk in chickens represents an effective strategy for the production of pharmaceutical glycoproteins using transgenic chicken bioreactors.  相似文献   
952.
Mutations in the S region of the hepatitis B virus (HBV) envelope gene are associated with immune escape, occult infection, and resistance to therapy. We previously identified naturally occurring mutations in the S gene that alter HBV virion secretion. Here we used transcomplementation assay to confirm that the I110M, G119E, and R169P mutations in the S domain of viral envelope proteins impair virion secretion and that an M133T mutation rescues virion secretion of the I110M and G119E mutants. The G119E mutation impaired detection of secreted hepatitis B surface antigen (HBsAg), suggesting immune escape. The R169P mutant protein is defective in HBsAg secretion as well and has a dominant negative effect when it is coexpressed with wild-type envelope proteins. Although the S domain is present in all three envelope proteins, the I110M, G119E, and R169P mutations impair virion secretion through the small envelope protein. Conversely, coexpression of just the small envelope protein of the M133T mutant could rescue virion secretion. The M133T mutation could also overcome the secretion defect caused by the G145R immune-escape mutation or mutation at N146, the site of N-linked glycosylation. In fact, the M133T mutation creates a novel N-linked glycosylation site ((131)NST(133)). Destroying this site by N131Q/T mutation or preventing glycosylation by tunicamycin treatment of transfected cells abrogated the effect of the M133T mutation. Our findings demonstrate that N-linked glycosylation of HBV envelope proteins is critical for virion secretion and that the secretion defect caused by mutations in the S protein can be rescued by an extra glycosylation site.  相似文献   
953.
The upstream signaling pathway leading to the activation of AMP-activated protein kinase (AMPK) by high density lipoprotein (HDL) and the role of AMPK in HDL-induced antiatherogenic actions were investigated. Experiments using genetic and pharmacological tools showed that HDL-induced activation of AMPK is dependent on both sphingosine 1-phosphate receptors and scavenger receptor class B type I through calcium/calmodulin-dependent protein kinase kinase and, for scavenger receptor class B type I system, additionally serine-threonine kinase LKB1 in human umbilical vein endothelial cells. HDL-induced activation of Akt and endothelial NO synthase, stimulation of migration, and inhibition of monocyte adhesion and adhesion molecule expression were dependent on AMPK activation. The inhibitory role of AMPK in the adhesion molecule expression and monocyte adhesion on endothelium of mouse aorta was confirmed in vivo and ex vivo. On the other hand, stimulation of ERK and proliferation were hardly affected by AMPK knockdown but completely inhibited by an N17Ras, whereas the dominant-negative Ras was ineffective for AMPK activation. In conclusion, dual HDL receptor systems differentially regulate AMPK activity through calcium/calmodulin-dependent protein kinase kinase and/or LKB1. Several HDL-induced antiatherogenic actions are regulated by AMPK, but proliferation-related actions are regulated by Ras rather than AMPK.  相似文献   
954.
Because bone marrow-derived stromal cells (BMSCs) are able to generate many cell types, they are envisioned as source of regenerative cells to repair numerous tissues, including bone, cartilage, and ligaments. Success of BMSC-based therapies, however, relies on a number of methodological improvements, among which better understanding and control of the BMSC differentiation pathways. Since many years, the biochemical environment is known to govern BMSC differentiation, but more recent evidences show that the biomechanical environment is also directing cell functions. Using in vitro systems that aim to reproduce selected components of the in vivo mechanical environment, it was demonstrated that mechanical loadings can affect BMSC proliferation and improve the osteogenic, chondrogenic, or myogenic phenotype of BMSCs. These effects, however, seem to be modulated by parameters other than mechanics, such as substrate nature or soluble biochemical environment. This paper reviews and discusses recent experimental data showing that despite some knowledge limitation, mechanical stimulation already constitutes an additional and efficient tool to drive BMSC differentiation.  相似文献   
955.
Despite a positive correlation between chronic kidney disease and atherosclerosis, the causative role of uremic toxins in leukocyte-endothelial interactions has not been reported. We thus examined the effects of indoxyl sulfate, a uremic toxin, on leukocyte adhesion to activated endothelial cells and the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with indoxyl sulfate significantly enhanced the adhesion of human monocytic cells (THP-1 cell line) to TNF-α-activated HUVEC under physiological flow conditions. Treatment with indoxyl sulfate enhanced the expression level of E-selectin, but not that of ICAM-1 or VCAM-1, in HUVEC. Indoxyl sulfate treatment enhanced the activation of JNK, p38 MAPK, and NF-κB in TNF-α-activated HUVEC. Inhibitors of JNK and NF-κB attenuated indoxyl sulfate-induced E-selectin expression in HUVEC and subsequent THP-1 adhesion. Furthermore, treatment with the NAD(P)H oxidase inhibitor apocynin and the glutathione donor N-acetylcysteine inhibited indoxyl sulfate-induced enhancement of THP-1 adhesion to HUVEC. Next, we examined the in vivo effect of indoxyl sulfate in nephrectomized chronic kidney disease model mice. Indoxyl sulfate-induced leukocyte adhesion to the femoral artery was significantly reduced by anti-E-selectin antibody treatment. These findings suggest that indoxyl sulfate enhances leukocyte-endothelial interactions through up-regulation of E-selectin, presumably via the JNK- and NF-κB-dependent pathway.  相似文献   
956.
A dimorphic transition from the yeast form to filamentous one in Candida tropicalis pK233 is triggered by the addition of ethanol into the glucose semi-defined liquid medium and the process of filamentation accompanies temporal depolarization of yeast cells. The transition is completely prevented by further supplementation of myo-inositol at the start of cultivation. The addition of ethanol caused an increase in membrane fluidity during the process of depolarization, and then fluidity was gradually lowered to the level equivalent with that of the stationary-phase yeast cells in accordance with filamentation. The increase in membrane fluidity of ethanol-induced cells appeared parallel with reduction in the content of membrane phosphatidylinositol, which was rich in saturated palmitic acid. Introduction of exogenous myo-inositol or 1 M sorbitol into the ethanol-supplemented culture at the start of cultivation restored yeast growth and the reduction of membrane fluidity occurred, coupled with the recovery of the phosphatidylinositol content.  相似文献   
957.
The immunologic effects of developmental exposure to noninherited maternal Ags (NIMAs) are quite variable. Both tolerizing influence and inducing alloreaction have been observed on clinical transplantation. The role of minor histocompatibility Ags (MiHAs) in NIMA effects is unknown. MiHA is either matched or mismatched in NIMA-mismatched transplantation because a donor of the transplantation is usually limited to a family member. To exclude the participation of MiHA in a NIMA effect for MHC (H-2) is clinically relevant because mismatched MiHA may induce severe alloreaction. The aim of this study is to understand the mechanism of NIMA effects in MHC-mismatched, MiHA-matched hematopoietic stem cell transplantation. Although all offsprings are exposed to the maternal Ags, the NIMA effect for the H-2 Ag was not evident. However, they exhibit two distinct reactivities, low and high responder, to NIMA in utero and during nursing depending on the degree of maternal microchimerism. Low responders survived longer with less graft-versus-host disease. These reactivities were correlated with Foxp3 expression of peripheral blood CD4(+)CD25(+) cells after graft-versus-host disease induction and the number of IFN-γ-producing cells stimulated with NIMA pretransplantation. These observations are clinically relevant and suggest that it is possible to predict the immunological tolerance to NIMA.  相似文献   
958.
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. However, regulation of the CIDE family by insulin and the contribution of the CIDE family to insulin actions remain unclear. Here, we investigated whether insulin regulates expression of the CIDE family and which subtypes contribute to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. Insulin decreased CIDEA and increased CIDEC but not CIDEB mRNA expression. Starvation-induced apoptosis in adipocytes was significantly inhibited when insulin decreased the CIDEA mRNA level. Small interfering RNA-mediated depletion of CIDEA inhibited starvation-induced apoptosis similarly to insulin and restored insulin deprivation-reduced adipocyte number, whereas CIDEC depletion did not. Lipid droplet size of adipocytes was increased when insulin increased the CIDEC mRNA level. In contrast, insulin-induced enlargement of lipid droplets was markedly abrogated by depletion of CIDEC but not CIDEA. Furthermore, depletion of CIDEC, but not CIDEA, significantly increased glycerol release from adipocytes. These results suggest that CIDEA and CIDEC are novel genes regulated by insulin in human adipocytes and may play key roles in the effects of insulin, such as anti-apoptosis and lipid droplet formation.  相似文献   
959.
The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima’s D and Fu’s Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonising alpine mammals and its mitochondrial locus has evolved without bottleneck effects.  相似文献   
960.
In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions—the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100β. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号