首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   28篇
  2022年   8篇
  2021年   14篇
  2020年   10篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   18篇
  2014年   27篇
  2013年   32篇
  2012年   23篇
  2011年   35篇
  2010年   28篇
  2009年   15篇
  2008年   25篇
  2007年   14篇
  2006年   19篇
  2005年   11篇
  2004年   24篇
  2003年   11篇
  2002年   18篇
  2001年   18篇
  2000年   18篇
  1999年   9篇
  1998年   7篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1985年   5篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1976年   2篇
  1974年   4篇
  1973年   5篇
  1969年   2篇
  1967年   4篇
  1966年   3篇
  1965年   2篇
排序方式: 共有526条查询结果,搜索用时 31 毫秒
161.
Understanding what mechanisms shape the diversity and composition of biological assemblages across broad‐scale gradients is central to ecology. Litter‐consuming detritivorous invertebrates in streams show an unusual diversity gradient, with α‐diversity increasing towards high latitudes but no trend in γ‐diversity. We hypothesized this pattern to be related to shifts in nestedness and several ecological processes shaping their assemblages (dispersal, environmental filtering and competition). We tested this hypothesis, using a global dataset, by examining latitudinal trends in nestedness and several indicators of the above processes along the latitudinal gradient. Our results suggest that strong environmental filtering and low dispersal in the tropics lead to often species‐poor local detritivore assemblages, nested in richer regional assemblages. At higher latitudes, dispersal becomes stronger, disrupting the nested assemblage structure and resulting in local assemblages that are generally more species‐rich and non‐nested subsets of the regional species pools. Our results provide evidence that mechanisms underlying assemblage composition and diversity of stream litter‐consuming detritivores shift across latitudes, and provide an explanation for their unusual pattern of increasing α‐diversity with latitude. When we repeated these analyses for whole invertebrate assemblages of leaf litter and for abundant taxa showing reverse or no diversity gradients we found no latitudinal patterns, suggesting that function‐based rather than taxon‐based analyses of assemblages may help elucidate the mechanisms behind diversity gradients.  相似文献   
162.
Migration is adaptive if survival benefits are larger than costs of residency. Many aspects of bat migration ecology such as migratory costs, stopover site use and fidelity are largely unknown. Since many migrating bats are endangered, such information is urgently needed to promote conservation. We selected the migrating Leisler''s bat (Nyctalus leisleri) as model species and collected capture-recapture data in southern Switzerland year round during 6 years. We estimated seasonal survival and site fidelity with Cormack-Jolly-Seber models that accounted for the presence of transients fitted with Bayesian methods and assessed differences between sexes and seasons. Activity peaked in autumn and spring, whereas very few individuals were caught during summer. We hypothesize that the study site is a migratory stopover site used during fall and spring migration for most individuals, but there is also evidence for wintering. Additionally, we found strong clues for mating during fall. Summer survival that included two major migratory journeys was identical to winter survival in males and slightly higher in females, suggesting that the migratory journeys did not bear significant costs in terms of survival. Transience probability was in both seasons higher in males than in females. Our results suggest that, similarly to birds, Leisler''s bat also use stopover sites during migration with high site fidelity. In contrast to most birds, the stopover site was also used for mating and migratory costs in terms of survival seemed to be low. Transients'' analyses highlighted strong individual variation in site use which makes particularly challenging the study and modelling of their populations as well as their conservation.  相似文献   
163.
A novel conceptual framework is presented that proposes to apply trait‐based approaches to predicting the impact of environmental change on ecosystem service delivery by multi‐trophic systems. Development of the framework was based on an extension of the response–effect trait approach to capture functional relationships that drive trophic interactions. The framework was populated with worked examples to demonstrate its flexibility and value for linking disparate data sources, identifying knowledge gaps and generating hypotheses for quantitative models.  相似文献   
164.
165.
166.
167.
We present an integrated experimental–computational mechanobiology model of chondrogenesis. The response of human articular chondrocytes to culture medium perfusion, versus perfusion associated with cyclic pressurisation, versus non-perfused culture, was compared in a pellet culture model, and multiphysic computation was used to quantify oxygen transport and flow dynamics in the various culture conditions. At 2 weeks of culture, the measured cell metabolic activity and the matrix content in collagen type II and aggrecan were greatest in the perfused+pressurised pellets. The main effects of perfusion alone, relative to static controls, were to suppress collagen type I and GAG contents, which were greatest in the non-perfused pellets. All pellets showed a peripheral layer of proliferating cells, which was thickest in the perfused pellets, and most pellets showed internal gradients in cell density and matrix composition. In perfused pellets, the computed lowest oxygen concentration was 0.075 mM (7.5% tension), the maximal oxygen flux was 477.5 nmol/m2/s and the maximal fluid shear stress, acting on the pellet surface, was 1.8 mPa (0.018 dyn/cm2). In the non-perfused pellets, the lowest oxygen concentration was 0.003 mM (0.3% tension) and the maximal oxygen flux was 102.4 nmol/m2/s. A local correlation was observed, between the gradients in pellet properties obtained from histology, and the oxygen fields calculated with multiphysic simulation. Our results show up-regulation of hyaline matrix protein production by human chondrocytes in response to perfusion associated with cyclic pressurisation. These results could be favourably exploited in tissue engineering applications.  相似文献   
168.
Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as a series of abrupt discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed at larger scales.  相似文献   
169.
Patient‐specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long‐QT syndromes (LQTS). To study the LQT2‐associated c.A2987T (N996I) KCNH2 mutation under genetically defined conditions, we derived iPSCs from a patient carrying this mutation and corrected it. Furthermore, we introduced the same point mutation in human embryonic stem cells (hESCs), generating two genetically distinct isogenic pairs of LQTS and control lines. Correction of the mutation normalized the current (IKr) conducted by the HERG channel and the action potential (AP) duration in iPSC‐derived cardiomyocytes (CMs). Introduction of the same mutation reduced IKr and prolonged the AP duration in hESC‐derived CMs. Further characterization of N996I‐HERG pathogenesis revealed a trafficking defect. Our results demonstrated that the c.A2987T KCNH2 mutation is the primary cause of the LQTS phenotype. Precise genetic modification of pluripotent stem cells provided a physiologically and functionally relevant human cellular context to reveal the pathogenic mechanism underlying this specific disease phenotype.  相似文献   
170.
Density estimation for marine mammal species is performed primarily using visual distance sampling or capture‐recapture. Minke whales in Hawaiian waters are very difficult to sight; however, they produce a distinctive “boing” call, making them ideal candidates for passive acoustic density estimation. We used an array of 14 bottom‐mounted hydrophones, distributed over a 60 × 30 km area off Kauai, Hawaii, to estimate density during 12 d of recordings in early 2006. We converted the number of acoustic cues (i.e., boings) detected using signal processing software into a cue density by accounting for the false positive rate and probability of detection. The former was estimated by manual validation, the latter by applying spatially explicit capture‐recapture (SECR) methods to a subset of data where we had determined which hydrophones detected each call. Estimated boing density was 130 boings per hour per 10,000 km2 (95% CI 104–163). Little is known about the population's acoustic behavior, so conversion from boing to animal density is difficult. As a demonstration of the method, we used a tentative boing rate of 6.04 boings per hour, from a single animal tracked in 2009, to give an estimate of 21.5 boing‐calling minke whales per 10,000 km2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号