首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   59篇
  国内免费   1篇
  996篇
  2022年   5篇
  2021年   19篇
  2020年   12篇
  2019年   13篇
  2018年   16篇
  2017年   10篇
  2016年   16篇
  2015年   22篇
  2014年   23篇
  2013年   39篇
  2012年   49篇
  2011年   42篇
  2010年   29篇
  2009年   36篇
  2008年   44篇
  2007年   40篇
  2006年   35篇
  2005年   41篇
  2004年   34篇
  2003年   30篇
  2002年   38篇
  2001年   32篇
  2000年   35篇
  1999年   22篇
  1998年   19篇
  1997年   13篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   18篇
  1991年   17篇
  1990年   17篇
  1989年   19篇
  1988年   16篇
  1987年   18篇
  1986年   19篇
  1985年   15篇
  1984年   18篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   7篇
  1976年   6篇
  1975年   6篇
  1974年   5篇
  1973年   8篇
  1966年   5篇
排序方式: 共有996条查询结果,搜索用时 15 毫秒
41.
Xenopus laevis oocytes were injected with poly(A)+ mRNAs extracted from the electric lobes of Torpedo marmorata. The electric lobes contain the perikarya of approximately 120,000 cholinergic neurons that innervate the electric organs and are homologous to motor neurons. The injected oocytes accumulated acetylcholine and were able to synthesize [14C]acetylcholine from 1-[14C]acetate. With KCl depolarization and upon treatment with a Ca2+ ionophore, they released their endogenous as well as the radiolabelled neurotransmitter in a Ca(2+)-dependent manner. No synthesis or release were obtained from control oocytes. With respect to their dependency upon Ca2+ concentration, the oocytes injected with Torpedo electric lobe mRNAs released acetylcholine in a manner which closely resembled that found in the native synapses. In contrast to the controls, primed oocytes were also able to release [14C]acetylcholine that was injected a few hours prior to the release trial. Immunoblot analysis demonstrated that the 15 kd proteolipid antigen of the purified mediatophore, a 200 kd presynaptic protein able to translocate acetylcholine, was expressed in the ACh-releasing oocytes but not in the controls. The present observation may provide a useful approach for investigating the proteins involved in the release of acetylcholine and of other neurotransmitter substances.  相似文献   
42.
Hydrodynamic calculations lead to the conclusion that chymotryptic (or ethylenediaminetetraacetic acid) myosin S1 in solution (hydrated), at 1-5 degrees C, can be modeled as a prolate ellipsoid, with an axial ratio lying between p = 1.0 and 2.5 (major axis between 100.5 A, for p = 1.0, and 162.5 A, for p = 2.5). The degree of hydration is considerable (1.24 g/g for p = 2.5 and 2.02 g/g for p = 1.0). The dehydrated myosin head is pear-shaped under the electron microscope, and its narrowest part is located near the junction with the tail [Elliott, A., & Offer, G. (1978) J. Mol. Biol. 123, 505-519]. Mendelson & Kretzschmar [Mendelson, R. A., & Kretzschmar, K.M. (1980) Biochemistry 19, 4103-4108] have shown that the pear-shaped molecule does not predict the experimental X-ray scattering curve. Nor is this model able to predict the hydrodynamic values. The three-dimensional model for S1 used by Mendelson and Kretzschmar gives a rather good fit to the experimental X-ray scattering curve, but it does not predict the hydrodynamic values. In order to try to reconcile the three models and to fit the X-ray scattering curve and the hydrodynamic data, we suggest that, in solution, the S1 monomer has the shape of a prolate ellipsoid and that an inclusion of bound water exists at one extremity of the protein. The rest of bound water surrounds the protein. As first approximation, the dry protein and the hole are assumed to have the same shape as the hydrated molecule (prolate ellipsoid; p).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
43.
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellow peroba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium berghei in mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.  相似文献   
44.
High-level expression of chromosomally integrated genes in Methylobacterium extorquens ATCC 55366 was achieved under the control of the strong M. extorquens AM1 methanol dehydrogenase promoter (PmxaF) using the mini-Tn7 transposon system. Stable maintenance and expression of the integrated genes were obtained in the absence of antibiotic selective pressure. Furthermore, using this technology, a multicopy integration protocol for M. extorquens was also developed. Chromosomal integration of one to five copies of the gene encoding the green fluorescent protein (gfp) was achieved. The multicopy-based expression system permitted expression of a preset number of gene copies. A unique specific Tn7 integration locus in the chromosome of M. extorquens, known as the Tn7 attachment site (attTn7 site), was identified. This single attTn7 site was identified in an intergenic region between glmS, which encodes the essential enzyme glucosamine-6-phosphate synthetase, and dhaT, which encodes 1,3-propanediol dehydrogenase. The fact that the integration event is site specific and the fact that the attTn7 site is a noncoding region of the chromosome make the mini-Tn7 transposon system very useful for insertion of target genes and subsequent expression. In all transformants tested, expression and segregation of the transforming gene were stable without generation of secondary mutations in the host. In this paper, we describe single and multicopy chromosome integration and stable expression of heterologous genes (bgl [beta-galactosidase], est [esterase], and gfp [green fluorescent protein]) in M. extorquens.  相似文献   
45.
This article presents work carried out as part of the robot sécurisé d’assistance à la chirurgie endoscopique (Rosace) project (funding ANR TecSan06), involving both academic and clinical partners along with an industrial partner in charge of technology integration. The main subject is a lightweight and compact robot for assistance in the endoscopic surgery field. The goal of the project has been to improve then transfer on a medical-grade product some technologies initially developed by the two academic partners. These technologies are: a first prototype of a robotic endoscope holder, an original method for visual servoing based on instrument tracking and some work done on comanipulation concept which consists in synergic interaction between robot and user. In accordance with the initial goals, major improvements have been obtained on these three aspects of the project. Robotic architecture improvement has contributed to enhance robot's versatility while robot command has been made more efficient and simple to use thanks to instrument tracking and comanipulation. After this 3-year project, initial prototype has turned into a commercially available product integrating (or that will integrate in a few months) these new technologies.  相似文献   
46.
Carotenoids are dietary antioxidants transported with plasma lipoproteins, primarily low-density lipoprotein (LDL). In this study in vitro methods were used to increase the amounts of specific, individual carotenoids in LDL. By addition of carotenoid to isolated LDL or to serum, followed by (re)isolation of the lipoproteins, samples of LDL were enriched 4- to 150-fold with lutein, 2- to 15-fold with lycopene, or 3- to 25-fold with β-carotene. Enrichment with specific carotenoids was achieved without affecting the electrophoretic mobility of the lipoprotein, its cholesterol to protein ratio, or the levels of other cartenoids or -tocopherol. The distributions among lipoproteins of carotenoid added to serum were similar, but not identical, to the distributions of the endogenous carotenoids. In particular, for added lutein, a greater proportion was found in HDL, and for added β-carotene, more was found in very low-density lipoprotein (VLDL). We then studied the effect of enriching LDL with specific carotenoids on its susceptibility to oxidation by copper ions. Lutein, β-cryptoxanthin, lycopene, and β-carotene, the four major plasma carotenoids, and -tocopherol were destroyed before the formation of lipid peroxidation products. The rates of destruction of the individual carotenoids differed; lycopene was destroyed most rapidly and lutein most slowly. Upon oxidation of β-carotene-enriched LDL, the rates of destruction of β-carotene, lycopene, and lutein were slowed and the lag times before the initiation of lipid peroxidation increased from 19 to 65 min. Neither effect was observed in LDL enriched with lutein or lycopene. Thus, β-carotene was unique among the carotenoids studied in having a small, but significant effect on LDL oxidation in vitro.  相似文献   
47.
The existence of Na+ -dependent Ca2+ transport was investigated in microsomal fractions from the longitudinal smooth muscle of the guinea-pig ileum and from the rat aorta, and its activity was compared with that of the plasmalemmal ATP-dependent Ca2+ pump previously identified in these preparations. The rate of Ca2+ release from plasmalemmal vesicles previously loaded with Ca2+ through the ATP-dependent Ca2+ pump was transiently faster in the presence of 150 mM-NaCl in the medium than in the presence of 150 mM-KCl or -LiCl or 300 mM-sucrose. Na+-loaded vesicles took up Ca2+ when an outwardly directed Na+ gradient was formed across the membrane. The Ca ionophore A23187 induced a rapid release of 85% of the sequestered Ca2+, whereas only 15% was displaced by La3+. Ca2+ accumulated by the Na+-induced Ca2+ transport was released by the addition of NaCl, but not KCl, to the medium. Ca2+ uptake in Na+-loaded vesicles was inhibited in the presence of increasing NaCl concentration in the medium. Half-maximum inhibition was observed with 28 mM-NaCl. Data fitted the Hill equation, with a Hill coefficient (h) of 1.9. Na+-induced Ca2+ uptake was a saturable function of Ca2+ concentration in the medium. Half-maximum activity was obtained with 18 microM-Ca2+ in intestinal-smooth-muscle microsomal fraction and with 50 microM-Ca2+ in aortic microsomal fraction. The results suggest that in these membrane preparations a transmembrane movement of Ca2+ can be driven by a Na+ gradient. However, the Na+-induced Ca2+ transport had a lower capacity, a lower affinity and a slower rate than the ATP-dependent Ca2+ pump.  相似文献   
48.
ΔN123-glucan-binding domain-catalytic domain 2 (ΔN123-GBD-CD2) is a truncated form of the bifunctional glucansucrase DSR-E from Leuconostoc mesenteroides NRRL B-1299. It was constructed by rational truncation of GBD-CD2, which harbors the second catalytic domain of DSR-E. Like GBD-CD2, this variant displays α-(1→2) branching activity when incubated with sucrose as glucosyl donor and (oligo-)dextran as acceptor, transferring glucosyl residues to the acceptor via a ping-pong bi-bi mechanism. This allows the formation of prebiotic molecules containing controlled amounts of α-(1→2) linkages. The crystal structure of the apo α-(1→2) branching sucrase ΔN123-GBD-CD2 was solved at 1.90 Å resolution. The protein adopts the unusual U-shape fold organized in five distinct domains, also found in GTF180-ΔN and GTF-SI glucansucrases of glycoside hydrolase family 70. Residues forming subsite −1, involved in binding the glucosyl residue of sucrose and catalysis, are strictly conserved in both GTF180-ΔN and ΔN123-GBD-CD2. Subsite +1 analysis revealed three residues (Ala-2249, Gly-2250, and Phe-2214) that are specific to ΔN123-GBD-CD2. Mutation of these residues to the corresponding residues found in GTF180-ΔN showed that Ala-2249 and Gly-2250 are not directly involved in substrate binding and regiospecificity. In contrast, mutant F2214N had lost its ability to branch dextran, although it was still active on sucrose alone. Furthermore, three loops belonging to domains A and B at the upper part of the catalytic gorge are also specific to ΔN123-GBD-CD2. These distinguishing features are also proposed to be involved in the correct positioning of dextran acceptor molecules allowing the formation of α-(1→2) branches.  相似文献   
49.
Chronic granulomatous disease is an inherited disorder in which phagocytes lack a functional NADPH oxidase and so cannot generate superoxide anions (O2). The most common form is caused by mutations in CYBB encoding gp91 phox, the heavy chain of flavocytochrome b558 (XCGD). We investigated 11 male patients and their families suspected of suffering from X-linked CGD. These XCGD patients were classified as having different variants (X910, X91 or X91+) according to their cytochrome b558 expression and NADPH oxidase activity. Nine patients had X910 CGD, one had X91 CGD and one had X91+ CGD. Six mutations in CYBB were novel. Of the four new X910 CGD cases, three were point mutations: G65A in exon 2, G387T in exon 5 and G970T in exon 9, leading to premature stop codons at positions Try18, Try125 and Glu320, respectively, in gp91 phox. One case of X910 CGD originated from a new 1005G deletion detected in exon 9. Surprisingly, four nonsense mutations in exon 5 led to the generation of two mRNAs, one with a normal size containing the mutation and the other in which exon 5 had been spliced. A novel X91 CGD case with low gp91 phox expression was diagnosed. It was caused by an 11-bp deletion in the linking region between exon 12 and intron 12, activating a new cryptic site. Finally, a new X91+ CGD case was detected, characterized by a missense mutation Leu505Arg in the potential NADPH-binding site of gp91 phox. No clear correlation between the severity of the clinical symptoms and the sub-type of XCGD could be established.  相似文献   
50.
Sulfate-reducing bacteria (SRB) in anoxic waters and sediments are the major producers of methylmercury in aquatic systems. Although a considerable amount of work has addressed the environmental factors that control methylmercury formation and the conditions that control bioavailability of inorganic mercury to SRB, little work has been undertaken analyzing the biochemical mechanism of methylmercury production. The acetyl-coenzyme A (CoA) pathway has been implicated as being key to mercury methylation in one SRB strain, Desulfovibrio desulfuricans LS, but this result has not been extended to other SRB species. To probe whether the acetyl-CoA pathway is the controlling biochemical process for methylmercury production in SRB, five incomplete-oxidizing SRB strains and two Desulfobacter strains that do not use the acetyl-CoA pathway for major carbon metabolism were assayed for methylmercury formation and acetyl-CoA pathway enzyme activities. Three of the SRB strains were also incubated with chloroform to inhibit the acetyl-CoA pathway. So far, all species that have been found to have acetyl-CoA activity are complete oxidizers that require the acetyl-CoA pathway for basic metabolism, as well as methylate mercury. Chloroform inhibits Hg methylation in these species either by blocking the methylating enzyme or by indirect effects on metabolism and growth. However, we have identified four incomplete-oxidizing strains that clearly do not utilize the acetyl-CoA pathway either for metabolism or mercury methylation (as confirmed by the absence of chloroform inhibition). Hg methylation is thus independent of the acetyl-CoA pathway and may not require vitamin B(12) in some and perhaps many incomplete-oxidizing SRB strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号