首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1812篇
  免费   113篇
  国内免费   1篇
  1926篇
  2023年   10篇
  2022年   35篇
  2021年   62篇
  2020年   37篇
  2019年   66篇
  2018年   49篇
  2017年   53篇
  2016年   73篇
  2015年   105篇
  2014年   129篇
  2013年   133篇
  2012年   149篇
  2011年   119篇
  2010年   87篇
  2009年   67篇
  2008年   94篇
  2007年   82篇
  2006年   91篇
  2005年   71篇
  2004年   56篇
  2003年   49篇
  2002年   46篇
  2001年   42篇
  2000年   43篇
  1999年   33篇
  1998年   24篇
  1997年   20篇
  1996年   16篇
  1995年   9篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   13篇
  1990年   5篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   4篇
  1972年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有1926条查询结果,搜索用时 15 毫秒
31.
32.
33.
Kinetoplastids are a large group of free-living and parasitic eukaryotic flagellates, including the medically important trypanosomatids (e.g., Trypanosoma and Leishmania) and the widespread free-living and parasitic bodonids. Small subunit rRNA- and conserved protein-based phylogenies support the division of kinetoplastids into five orders (Prokinetoplastida, Neobodonida, Parabodonida, Eubodonida, and Trypanosomatida), but they produce incongruent results regarding their relative branching order, in particular for the position of the Trypanosomatida. In general, small subunit rRNA tends to support their early emergence, whereas protein phylogenies most often support a more recent origin from within bodonids. In order to resolve this question through a phylogenomic approach, we carried out massive parallel sequencing of cDNA from representatives of three bodonid orders (Bodo saltans -Eubodonida-, Procryptobia sorokini -Parabodonida-, and Rhynchomonas nasuta -Neobodonida-). We identified 64 well-conserved proteins shared by these species, four trypanosomatids, and two closely related outgroup species (Euglena gracilis and Diplonema papillatum). Phylogenetic analysis of a concatenated data set yielded a strongly supported tree showing the late emergence of trypanosomatids as a sister group of the Eubodonida. In addition, we identified homologues of proteins involved in trypanosomatid mitochondrial mRNA editing in the three bodonid species, suggesting that editing may be widespread in kinetoplastids. Comparison of expressed sequences from mitochondrial genes showed variability at U positions, in agreement with the existence of editing activity in the three bodonid orders most closely related to trypanosomatids (Neobodonida, Parabodonida, and Eubodonida). Mitochondrial mRNA editing appears to be an ancient phenomenon in kinetoplastids.  相似文献   
34.
Holymenia clavigera (Herbst) and Anisoscelis foliacea marginella (Dallas) (Hemiptera: Coreidae: Anisoscelini) are distributed in southern Brazil and use various passion vine species (Passifloraceae) as host-plants. Preliminary observations indicate a high coexistence of these species in terms of host-plant use; in addition, there is a strong similarity regarding egg and nymph morphology. In this study, the most suitable feeding sites for nymph performance on wild (Passiflora suberosa Linnaeus and Passiflora misera Humbold, Bonpland et Kunth) and cultivated (Passiflora edulis Sims) hosts were determined by rearing them on each host and on the combination of hosts. Performance was determined by evaluating nymph development and survivorship, and adult size at emergence. Plant parts used were also recorded. For both species, P. suberosa was the most suitable host plant. First instar nymphs of both species fed on terminal buds more frequently when compared to other plant parts. Second instar nymphs switched to green fruits, whose behavior was more pronounced for H. clavigera. Thus, H. clavigera and A. foliacea marginella immatures are extremely similar in terms of host-plant use and consequences for performance, in addition to their morphological similarity. We suggest that these coreids may have evolved through several processes, including parsimony between the immature stages after speciation, evolutionary convergence, mimicry or genetic drift.  相似文献   
35.
36.
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.Breast cancer, although a very heterogeneous disease, can be divided into three therapeutically relevant fundamental disease entities, simply based on estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)1 status (i.e. ER+ and/or Her2+, and ERHer2), as the major currently available breast cancer therapeutic options are based on the ability to target these proteins. Hormone receptor positive and hormone receptor negative breast cancers are disease entities with distinct morphological, genetic and biological behavior (1). Hormone receptor negative tumors, which constitute ∼30% of primary breast cancers, tend to be high-grade, more frequently BRCA1 and TP53 mutated, and, more importantly, are not amenable to endocrine therapy. Her2 is amplified in ∼18–20% of breast cancers, and is more frequently observed in hormone receptor negative tumors. Her2 amplification is associated with worse prognosis (higher rate of recurrence and mortality) in patients with newly diagnosed breast cancer who do not receive any adjuvant systemic therapy. Her2 status is also predictive for several systemic therapies, particularly for agents that target Her2. The development of a humanized monoclonal antibody against Her2 (trastuzumab) has resulted in reduction of the risk of recurrence and mortality in patients with Her2 amplification (2, 3). Although trastuzumab is considered one of the most effective targeted therapies currently available in oncology, a significant number of patients with Her2-overexpressing breast cancer do not benefit from it (4, 5).Breast tumors that do not express ER, PgR, or Her2 (ER PgR Her2), as determined by immunohistochemistry (IHC), are generally referred to as triple negative breast cancers (TNBCs), and they are not candidates for targeted therapies (endocrine therapy or trastuzumab). Although TNBCs account for a relatively small proportion of breast cancer cases (10–15%), they are responsible for a disproportionate number of breast cancer deaths. TNBC tumors form a recognizable prognostic group of breast cancer with aggressive behavior that currently lacks the benefit of available systemic therapy (68). Given the need to develop molecular criteria to reproducibly categorize molecular breast tumor subtypes at the protein level and the lack of targeted therapies available to treat patients bearing TNBCs, we have implemented a systematic proteomics approach to identify, characterize, and evaluate proteins present in triple-negative tumors that could constitute an appropriate therapeutic target for the clinical management of this group of patients. To this end, based on the analysis of 78 individual TNBC samples, we have established a large, cumulative, 2D-PAGE database of proteins expressed by TNBCs, including some that could be of potential therapeutic value. Comparison of this TNBC protein database with protein databases of other breast cancer subtypes previously established by our laboratory allowed us to single out a number of proteins preferentially expressed in TNBCs for which targeted therapeutics exist. In this report we further focused on the characterization of one such target, the cancer/testis antigen, melanoma-associated antigen 4 - Mage-A4.Cancer/testis antigens (CTAs) are expressed in a large variety of tumor types, whereas their expression in normal tissues is restricted to male germ cells, which are immune-privileged because of their lack of or low expression of human leukocyte antigen (HLA) molecules (9). Several studies have shown the existence of natural cellular and humoral responses against some CTAs, indicating that they are appropriate targets for vaccine-based cancer immunotherapy (1012). So far, the use of CTAs in immunotherapeutic approaches to cancer treatment has been tested in more than 60 early phase clinical trials, with varying success, and a few candidate products have reached late-stage clinical trials. One such candidate vaccine, Astuprotimut-R (GSK-249553), a Mage-A3 antigen-specific cancer immunotherapeutic agent, is currently under clinical evaluation by GlaxoSmithKline in the largest-ever treatment trial in lung cancer, called MAGRIT (Mage-A3 as Adjuvant nonsmall cell lunG canceR ImmunoTherapy) (13).At present, CTAs comprise about 150 members, more than half of which are encoded by large, recently expanded families on chromosome X (14; see also CTDatabase at www.cta.lncc.br; last accessed 01.09.2012). These genes are organized into clusters and have undergone rapid evolution, possibly because of positive selection. The biological functions of CTAs are not fully understood, but emerging evidence suggest that they direct the proliferation, differentiation, and survival of human germ line cells and may have similar effect in cancer cells. Mage-A4 protein belongs to the Mage-A family of CT antigens. The Mage-A family is composed by 12 proteins (14, 15) and many members of the Mage-A family of CTAs have been associated with cancer, including breast cancer (14, 16, 17). However, past studies reported mostly on MAGE genes rather than protein expression, or on the expression of Mage protein families and not on any given specific protein.In this paper we describe the identification of Mage-A4 in breast tumor biopsies using 2D PAGE coupled with MS proteomics, and follow the protein localization from the tumor cells, to the tumor microenvironment, and to the serum of a patient. Using a three-tier orthogonal technology approach that combined 2D PAGE silver staining coupled with MS, with 2D Western blotting, and IHC, we showed that high level Mage-A4 expression in breast tumors occurs almost exclusively in the receptor negative disease (TNBC and Her2+ERPgR). The existence of immunotherapeutic approaches targeting MAGE protein family members (Mage-A4 specific or with broader specificity) and the fact that we were able to detect its presence in serum suggest novel management options for patients bearing Mage-A4 positive TNBCs and Her2+ERPgR tumors.  相似文献   
37.
mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A’s reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation.  相似文献   
38.
Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana, coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA, for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.  相似文献   
39.

Background

The increasing prevalence of Helicobacter pylori (H. pylori) antimicrobial resistance, primarily for clarithromycin decreases the success of treatment. The aim of this study is to determine the local pattern of first‐line antimicrobials resistance and the eradication rate.

Material and Methods

Prospective cohort study of H. pylori infected patients (positive histological or cultural exams) treated at Centro Materno‐Infantil do Norte from January of 2013 to October of 2017. Susceptibility to 4 antibiotics: amoxicilin, metronidazole, clarithromycin, and levofloxacin were analyzed by E‐test (phenotypic resistance). The E‐test was chosen because it is simple and cost‐effective for routine susceptibility testing. Point mutations that confer clarithromycin resistance were surveyed (genotypic resistance). Eradication of H. pylori infection was defined by a negative urea breath test or fecal antigen 6‐8 weeks after the end of treatment.

Results

Of a total of 74 H. pylori infected patients, 16 were excluded because they had previous H. pylori treatment or severe systemic disease. Median age of infection cases was 15 years (3‐17 years). Eradication regimen used in all patients combined the use of 3 antibiotics (amoxicillin and metronidazole or clarithromycin) and proton pump inibhitor for 14 days and was tailored according antimicrobial susceptibility. 79.5% of the patients completed the treatment. The resistance rate for metronidazole and clarithromycin was 3.3% and 23.3%, respectively. There was no resistance for amoxicilin and levofloxacin. The rate of genotypic resistance to clarithromycin was 37.2%. The eradication rate was 97.8%.

Conclusions

The authors found a high resistance rate of H. pylori for clarithromycin in this northern portuguese pediatric center. This factor should determine a change in local current treatment, contraindicating the use of clarithromycin as a first‐line treatment for H. pylori infection in children. The high eradication rate maybe explained for the eradication treatment tailored according antimicrobial susceptibility.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号