首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
41.
A new method for the quantitation of the favism-inducing agents in legumes is described. The procedure involves differential extraction of the glucosides vicine and convicine with acetic acid (25%), followed by an enzymatic hydrolysis by beta-glucosidase under anaerobic conditions. Each of the aglycone moieties, isouramil and divicine, anaerobically reduces two molecules of o-ferriphenanthroline to o-ferrophenanthroline. This reaction is readily followed spectrophotometrically at 515 nm. Using this procedure, it was found that in various strains of Vicia faba, the level of these two glucosides comprises approximately 0.5% of the wet weight of the seeds. In contrast, these glucosides could not be detected in either green peas or chick peas.  相似文献   
42.
Ischemia associated injury of the myocardium is caused by oxidative damage during reperfusion. Myocardial protection by ischemic preconditioning (IPC) was shown to be mediated by a transient ‘iron-signal’ that leads to the accumulation of apoferritin and sequestration of reactive iron released during the ischemia. Here we identified the source of this ‘iron signal’ and evaluated its role in the mechanisms of cardiac protection by hypoxic preconditioning. Rat hearts were retrogradely perfused and the effect of proteasomal and lysosomal protease inhibitors on ferritin levels were measured. The iron-signal was abolished, ferritin levels were not increased and cardiac protection was diminished by inhibition of the proteasome prior to IPC. Similarly, double amounts of ferritin and better recovery after ex vivo ischemia-and-reperfusion (I/R) were found in hearts from in vivo hypoxia pre-conditioned animals. IPC followed by normoxic perfusion for 30 min (‘delay’) prior to I/R caused a reduced ferritin accumulation at the end of the ischemia phase and reduced protection. Full restoration of the IPC-mediated cardiac protection was achieved by employing lysosomal inhibitors during the ‘delay’. In conclusion, proteasomal protein degradation of iron-proteins causes the generation of the ‘iron-signal’ by IPC, ensuing de-novo apoferritin synthesis and thus, sequestering reactive iron. Lysosomal proteases are involved in subsequent ferritin breakdown as revealed by the use of specific pathway inhibitors during the ‘delay’. We suggest that proteasomal iron-protein degradation is a stress response causing an expeditious cytosolic iron release thus, altering iron homeostasis to protect the myocardium during I/R, while lysosomal ferritin degradation is part of housekeeping iron homeostasis.  相似文献   
43.
Oxidant stress is associated with the generation of reactive oxygen-derived species, which are considered as the ultimate agents responsible for the damage of a variety of cellular components. Transition metals such as iron ions serve as catalytic centers for the repeated conversion of superoxide radicals or ascorbate to the highly reactive and deleterious hydroxyl radicals and, indeed, increasing amounts of redox-active iron become available during plasmodial development within the parasitized erythrocytes. Thus, the survival of an intracellular parasite depends on the delicate balance of oxidant stress and defense mechanisms. This balance is continuously changing and the parasite must cope with increasing oxidant stress and the decline of protective capacity.  相似文献   
44.
Iron-associated oxidative injury plays a role in retinal degeneration such as age-related macular degeneration and retinitis pigmentosa. The metallo-complex zinc-desferrioxamine (Zn/DFO) may ameliorate such injury by chelation of labile iron in combination with release of zinc. We explored whether Zn/DFO can affect the course of retinal degeneration in the rd10 mouse model of retinitis pigmentosa. Zn/DFO-treated animals showed significantly higher electroretinographic responses at 3 and 4.5 weeks of age compared with saline-injected controls. Corresponding retinal (photoreceptor) structural rescue was observed by quantitative histological and immunohistochemical techniques. When administered alone, the components of the complex, Zn and DFO, showed a lesser, partial effect. TBARS, a marker of lipid peroxidation, and levels of oxidative DNA damage as quantified by 8-OHdG immunostaining were significantly lower in Zn/DFO-treated retinas compared with saline-injected controls. Reduced levels of retinal ferritin as well as reduced iron content within ferritin molecules were measured in Zn/DFO-treated retinas. The data, taken together, suggest that the protective effects of the Zn/DFO complex are mediated through modulation of iron bioavailability, leading to attenuation of oxidative injury. Reducing iron-associated oxidative stress using complexes such as Zn/DFO may serve as a “common pathway” therapeutic approach to attenuate injury in retinal degeneration.  相似文献   
45.
Nasal polyposis is a multifactorial disease with a strong inflammatory component. Its pathogenesis is often associated with ROS production catalysed by redox-active iron. This study aimed to characterize the roles of iron homeostasis and redox status in the pathogenesis of polyposis. Nasal polyps (NP) from asthmatics and non-asthmatics and turbinates from controls and NP-patients were analysed for ferritin, ferritin-bound iron (FBI) and levels of methionine-centred redox cycle proteins. The ferritin content in both NPs was significantly higher than in adjacent turbinates. No differences in FBI were observed between both NP groups and both turbinates groups, while in NPs it was significantly higher. In NP-turbinates the highest levels of redox proteins were observed. In conclusion, re-distribution of iron occurs upon the development of NP. While FBI is elevated in NPs, the adjacent turbinate remain iron-poor and low-inflammatory, suggesting the formation of virtual boundary between these tissues.  相似文献   
46.
Exposure of albumin to Cu(II) (10-100 microM) and ascorbate (0.1-2 mM) results in extensive molecular modifications, indicated by decreased fluorescence and chain breaks. The rate of utilization of molecular oxygen and ascorbate as a function of Cu(II) concentration is non-linear at copper/albumin ratios of greater than 1. It appears that Cu(II) bound to the tightest albumin-binding site is less available to the ascorbate than the more loosely bound cation. SDS/polyacrylamide-gel electrophoresis reveals new protein bands corresponding to 50, 47, 22, 18 and 3 kDa. For such a cleavage pattern, relatively few (approximately 3) and rather specific chain breaks occurred. Repeated addition of portions of ascorbate to the albumin/Cu(II) mixture results in increased intensity of the new bands. The absence of Cu(II) or the presence of metal chelating agents is inhibitory. There was no evidence of intermolecular cross-linking or of the formation of insoluble, albumin-derived, material. A mechanism is proposed wherein the loosely bound Cu(II) participates in a Fenton-type reaction. This generates OH. radicals, which rapidly inter-react with the protein and modify it in a 'site-specific' manner.  相似文献   
47.
The effects of ascorbate and copper on the development of Plasmodium falciparum were studied in two modes: pretreatment of uninfected erythrocytes followed by infection by P. falciparum and treatment of parasitized erythrocytes. Pretreatment of G6PD(+) cells with ascorbate caused a slight enhancement in parasite development, while in G6PD(-) cells a suppressive effect on the plasmodia was demonstrated. Copper alone interfered with parasite growth in both cell types. The combination of copper and ascorbate arrested parasite maturation, an effect which was more pronounced in G6PD(-) cells. Synergism between copper and ascorbate was better demonstrated following the treatment of infected erythrocytes: while ascorbate alone supported parasite development and copper alone had only a marginal suppressive effect, the combination of copper and ascorbate yielded a marked inhibition of parasite growth. Ascorbate proved destructive to the parasites in the presence of adventitious copper, or on the second day of the parasite life cycle. In these cases it acted as a pro-oxidant, while in other systems, in particular in the presence of a chelator, ascorbate acted as an antioxidant and promoted parasite growth. The understanding of the role of transition metals and free radicals in parasite development and injury could shed light on novel approaches to fight malaria.  相似文献   
48.
The essential mediatory role of copper and iron in paraquat-induced biological damage has been recently demonstrated. It was postulated that these transition metals undergo cyclic redox reactions and serve as centers for repeated production of hydroxyl radical, which are the ultimate deleterious agents. Additionally, we had presented evidence indicating efficient protection against paraquat toxicity by agents commonly employed (chelators, chemical scavengers, and protecting enzymes). In this study we have used the Escherichia coli model in order to develop a new approach for protection against paraquat-induced metal-mediated cellular injury. It entails the administration of excess zinc (up to 50-fold over copper), which results in an inhibition of the toxic effect of paraquat. Lineweaver-Burk analysis demonstrates the competitive mode of this inhibition. The suggested mechanism involves either the direct displacement of copper by zinc or the formation of a ternary complex, (formula; see text) in which the binding of Cu(II) is weakened by the binding of Zn(II), interfering with the copper-mediated free radicals formation. Thus, use of redox-inactive metals, which possess high similarity of their ligand chemistry to that of iron and copper but are of relative low toxicity by themselves, should be considered for intervention in paraquat toxicity and in other metal-mediated free radical-induced injurious processes.  相似文献   
49.
Allopurinol, a potent inhibitor of xanthine oxidase, is known to effectively protect the heart against damage in patients undergoing cardiac bypass surgery. There is still an ambiguity concerning the presence of xanthine oxidase in the human heart. Thus, the mechanism underlying the protective effect of allopurinol is unclear. Transition metal ions, such as iron and copper, can participate in single-electron reactions and mediate the formation of oxygen-derived free radicals. In this study the interaction between allopurinol and Cu(II) was investigated. Spectrophotometric investigation shows that allopurinol (0-0.8 mM) form a 1:1 complex with Cu(II) ions (0-0.8 mM) with a specific absorbance peak at 364 nm. Also, the rate constant (k) for the copper-catalyzed aerobic oxidation of ascorbate was markedly decreased in the presence of allopurinol (from 0.068 min-1 to 0.014min-1). Allopurinol substantially reduced the copper-mediated and ascorbate-driven DNA breakage. Spectrophotometric measurements did not indicate a specific interaction between iron ions and allopurinol. It is suggested that the beneficial effects of allopurinol during reperfusion of the heart could stem from its chelation of copper, yielding a complex with low redox activity.  相似文献   
50.
A crystal field analysis of EPR data for various low spin ferric cytochromes P-450 suggests that in all of them, regardless of source or method of induction, the heme ligands are a sulfur atom, presumably from cysteine, and an imidazole from histidine. The imidazole can be displaced in the ferric protein by cyanide, guanidine, or by an amine, analogous to its displacement by CO or NO in the ferrous protein. The resulting changes in the EPR parameters for the ferric protein are consistent with similar substitutions in heme thiol model compounds. The analysis of the latter can be understood on the basis of alterations of the electronic structure of the ligands to the heme iron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号