首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   13篇
  2021年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   10篇
  2012年   10篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1928年   1篇
排序方式: 共有158条查询结果,搜索用时 140 毫秒
11.
The limited value most French biologists attributed to Darwinism and Mendelism in the first half of the twentieth century, and their conviction that these theories were at best insufficient to explain evolution and development, probably created conditions propitious to the development of Evo-devo at the end of the century. The separation between embryology and evolution did not exist in French biology as it did in American genetics: explanations for these two phenomena were sought equally in the “organization” of the egg. The major contribution of French biologists to Evo-devo was clearly the invention of the notion of the regulatory gene by Jacob and Monod; not the operon model per se, but the introduction of a hierarchy between two different kinds of genes. The consequence, the rise of the developmental gene concept, was not immediate, and required the active role of other biologists such as Antonio Garcia-Bellido, Allan Wilson and Stephen Jay Gould. Various obstacles had to be overcome for this concept of developmental gene to be fully accepted.  相似文献   
12.
During chronic kidney disease (CKD), solutes called uremic solutes, accumulate in blood and tissues of patients. We developed an HPLC method for the simultaneous determination of several uremic solutes of clinical interest in biological fluids: phenol (Pol), indole-3-acetic acid (3-IAA), p-cresol (p-C), indoxyl sulfate (3-INDS) and p-cresol sulfate (p-CS). These solutes were separated by ion-pairing HPLC using an isocratic flow and quantified with a fluorescence detection. The mean serum concentrations of 3-IAA, 3-INDS and p-CS were 2.12, 1.03 and 13.03 μM respectively in healthy subjects, 3.21, 17.45 and 73.47 μM in non hemodialyzed stage 3-5 CKD patients and 5.9, 81.04 and 120.54 μM in hemodialyzed patients (stage 5D). We found no Pol and no p-C in any population. The limits of quantification for 3-IAA, 3-INDS, and p-CS were 0.83, 0.72, and 3.2 μM respectively. The within-day CVs were between 1.23 and 3.12% for 3-IAA, 0.98 and 2% for 3-INDS, and 1.25 and 3.01% for p-CS. The between-day CVs were between 1.78 and 5.48% for 3-IAA, 1.45 and 4.54% for 3-INDS, and 1.19 and 6.36% for p-CS. This HPLC method permits the simultaneous and quick quantification of several uremic solutes for daily analysis of large numbers of samples.  相似文献   
13.
The modern synthesis has been considered to be wrongly called a "synthesis", since it had completely excluded embryology, and many other disciplines. The recent developments of Evo-Devo have been seen as a step in the right direction, as complementing the modern synthesis, and probably leading to a "new synthesis". My argument is that the absence of embryology from the modern synthesis was the visible sign of a more profound lack: the absence of functional biology in the evolutionary synthesis. I will consider the reasons for this absence, as well as the recent transformations which favoured a closer interaction between these two branches of biology. Then I will describe two examples of recent work in which functional and evolutionary questioning were tightly linked. The most significant part of the paper will be devoted to the transformation of evolutionary theory that can be expected from this encounter: a deep transformation, or simply an experimental confirmation of this theory? I will not choose between these two different possibilities, but will discuss some of the difficulties which make the choice problematic.  相似文献   
14.
Today, epigenetics is a very fashionable field of research. Modification of DNA by methylation, and of chromatin by histone modification or substitution represents a major fraction of the studies; but this special issue shows that epigenetic studies are very diverse, and not limited to the study of chromatin. What is common behind these different uses of the word epigenetics? A brief historical survey shows that epigenetics was invented twice, with different meanings: in the 1940s, by Conrad Waddington, as the study of the relations between the genotype and the phenotype; in the 1960s, as the global mechanisms of gene regulation involved in differentiation and development; what is common is that an approach distinct from genetics was in both cases considered as necessary because genetic models were incapable to address these problems. A good way to appreciate the relations between genetics and epigenetics is to realize that the main aim of organisms is to reproduce, and to consider the way organisms perform this task. Genetics is the precise means organisms have invented to reproduce the structure of their macromolecular components; the genome is also used to control the level and place of this reproduction. All the other means organisms have used to reproduce were more or less the result of tinkering, and constitute the field of epigenetics, with its diversity and richness.  相似文献   
15.
Gene function     
The problem of gene function--of the relationships between hereditary material and the characteristics of organisms--preceded the rediscovery of Mendel's laws and accompanied the development of genetics in the XXth century. Molecular biologists replaced the simple gene-character relationship by two relationships: the first, between genes and proteins, was well defined, whereas the second between proteins and the complex structural and functional characteristics of organisms remained unknown. I will describe in this article the experimental approaches which helped to characterize during the last twenty years the relationships between proteins and characters. Four principles of macromolecular organization emerged from these studies: conservation of the elementary components during evolution, existence of pathways and networks, pleiotropy and redundancy. These principles are the explanation of the surprising experimental observations that have been made in recent years. The existence of these principles makes problematic any prediction on the consequences of gene modification. It both sounds the death-knell of the simplistic reductionist approach of many biologists, whereby genes were considered as responsible for specific functions, and definitely prevents the distribution of genes in separate, well defined categories.  相似文献   
16.
17.
McNamara, M.E., Orr, P.J., Manzocchi, T., Alcalá, L., Anadón, P. & Peñalver, E. 2011: Biological controls upon the physical taphonomy of exceptionally preserved salamanders from the Miocene of Rubielos de Mora, northeast Spain. Lethaia, Vol. 45, pp. 210–226. The middle Miocene Rubielos de Mora Konservat‐Lagerstätte of northeast Spain is hosted within profundal, finely laminated, lacustrine mudstones. The diverse biota includes abundant salamanders. Most individuals died during separate episodes and sank rapidly postmortem. Specimens are typically preserved in dorso‐ventral aspect, the most hydrodynamically stable orientation. The near‐cylindrical morphology of the body, however, allowed some carcasses to settle in or subsequently re‐orientate into, lateral orientations. Loss of skeletal elements (i.e. reduced completeness) reflects their location within the body and followed a distal to proximal trend. Two stages are identified: initial loss of a small number of phalanges, followed by loss of more proximal limb bones plus additional phalanges. Disarticulation is more complex: it occurred via several mechanisms (notably, abdominal rupture and re‐orientation of part of the body and limbs during decay) and shows no consistent pattern among specimens. The physical taphonomy of the salamanders is controlled predominantly by intrinsic biological factors, i.e. the geometry of the body and of individual skeletal elements, the orientation, inherent strength and location of specific joints and the extent to which soft tissues, particularly the skin, persist during decay. These biological factors probably control patterns of physical taphonomy of other fossil tetrapods with a similar skeletal configuration. □Articulation, completeness, Konservat‐Lagerstätten, orientation, quantitative taphonomy, salamanders.  相似文献   
18.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号