首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1188篇
  免费   87篇
  1275篇
  2023年   12篇
  2022年   17篇
  2021年   23篇
  2020年   19篇
  2019年   21篇
  2018年   30篇
  2017年   33篇
  2016年   32篇
  2015年   58篇
  2014年   57篇
  2013年   67篇
  2012年   86篇
  2011年   103篇
  2010年   60篇
  2009年   43篇
  2008年   74篇
  2007年   67篇
  2006年   45篇
  2005年   44篇
  2004年   39篇
  2003年   44篇
  2002年   35篇
  2001年   27篇
  2000年   22篇
  1999年   20篇
  1998年   14篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   14篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   8篇
  1985年   7篇
  1984年   8篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1976年   5篇
  1975年   5篇
  1974年   8篇
  1973年   7篇
  1972年   4篇
  1969年   5篇
  1968年   3篇
排序方式: 共有1275条查询结果,搜索用时 15 毫秒
101.

Background

Lateral gene transfer is a major force in microbial evolution and a great source of genetic innovation in prokaryotes. Protein complexity has been claimed to be a barrier for gene transfer, due to either the inability of a new gene's encoded protein to become a subunit of an existing complex (lack of positive selection), or from a harmful effect exerted by the newcomer on native protein assemblages (negative selection).

Results

We tested these scenarios using data from the model prokaryote Escherichia coli. Surprisingly, the data did not support an inverse link between membership in protein complexes and gene transfer. As the complexity hypothesis, in its strictest sense, seemed valid only to essential complexes, we broadened its scope to include connectivity in general. Transferred genes are found to be less involved in protein-protein interactions, outside stable complexes, and this is especially true for genes recently transferred to the E. coli genome. Thus, subsequent to transfer, new genes probably integrate slowly into existing protein-interaction networks. We show that a low duplicability of a gene is linked to a lower chance of being horizontally transferred. Notably, many essential genes in E. coli are conserved as singletons across multiple related genomes, have high connectivity and a highly vertical phylogenetic signal.

Conclusion

High complexity and connectivity generally do not impede gene transfer. However, essential genes that exhibit low duplicability and high connectivity do exhibit mostly vertical descent.  相似文献   
102.
Self-eating and self-killing: crosstalk between autophagy and apoptosis   总被引:3,自引:0,他引:3  
The functional relationship between apoptosis ('self-killing') and autophagy ('self-eating') is complex in the sense that, under certain circumstances, autophagy constitutes a stress adaptation that avoids cell death (and suppresses apoptosis), whereas in other cellular settings, it constitutes an alternative cell-death pathway. Autophagy and apoptosis may be triggered by common upstream signals, and sometimes this results in combined autophagy and apoptosis; in other instances, the cell switches between the two responses in a mutually exclusive manner. On a molecular level, this means that the apoptotic and autophagic response machineries share common pathways that either link or polarize the cellular responses.  相似文献   
103.
Biodiversity and Conservation - Biodiversity keeps declining in the European Union despite the large conservation effort done over the last decades. The Biodiversity Strategy for 2030 aims to...  相似文献   
104.
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5′UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.  相似文献   
105.
Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively.  相似文献   
106.
107.
The chromosomes of the invasive black-pigmy mussel (Xenostrobus securis (Lmk. 1819)) were analyzed by means of 4',6-diamidino-2-phenylindole (DAPI) / propidium iodide (PI) and chromomycin A3 (CMA) / DAPI fluorescence staining and fluorescent in situ hybridization using major rDNA, 5S rDNA, core histone genes, linker histone genes, and telomeric sequences as probes. The diploid chromosome number in this species is 2n = 30. The karyotype is composed of seven metacentric, one meta/submetacentric, and seven submetacentric chromosome pairs. Telomeric sequences appear at both ends of every single chromosome. Major rDNA clusters appear near the centromeres on chromosome pairs 1 and 3 and are associated with bright CMA fluorescence and dull DAPI fluorescence. This species shows five 5S rDNA clusters close to the centromeres on four chromosome pairs (2, 5, 6, and 8). Three of the four core histone gene clusters map to centromeric positions on chromosome pairs 7, 10, and 13. The fourth core histone gene cluster occupies a terminal position on chromosome pair 8, also bearing a 5S rDNA cluster. The two linker histone gene clusters are close to the centromeres on chromosome pairs 12 and 14. Therefore, the use of these probes allows the unequivocal identification of 11 of the 15 chromosome pairs that compose the karyotype of X. securis.  相似文献   
108.
Basic studies and applications on bioremediation of DDT: A review   总被引:2,自引:0,他引:2  
The persistent insecticide DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane) has been widely used for pest control in the management of mosquito-borne malaria and is still used for that purpose in some tropical countries. Considering the potential for negative effects due to DDT contamination, it is necessary to determine effective methods of remediation. Several methods have been used to degrade or transform DDT into less toxic compounds. Bacteria and white-rot fungi (WRF) have been shown to enhance the degradation process in soil using both pure and mixed cultures. Recently, a biological approach has been used as an environmentally-friendly treatment, using new biological sources to degrade DDT, e.g. brown-rot fungi (BRF), cattle manure compost (CMC) and spent mushroom waste (SMW). In this review, the abilities of BRF, CMC and SMW to degrade DDT are discussed, including the mechanisms and degradation pathways. Furthermore, application of these sources to contaminated soil is also described. The review discusses which is the best source for bioremediation of DDT.  相似文献   
109.
We report the synthesis, binding properties and intrinsic activity at MT(1) and MT(2) melatonin receptors of new dimeric melatonin receptor ligands in which two units of the monomeric agonist N-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide (1) are linked together through different anchor points. Dimerization of compound 1 through the methoxy substituent leads to a substantial improvement in selectivity for the MT(1) receptor, and to a partial agonist behavior. Compound 3a, with a trimethylene linker, was the most selective for the MT(1) subtype (112-fold selectivity) and compound 3d, characterized by a hexamethylene spacer, had the highest MT(1) binding affinity (pK(iMT1)=8.47) and 54-fold MT(1)-selectivity. Dimerization through the aniline nitrogen of 1 abolished MT(1) selectivity, leading to compounds with either a full agonist or an antagonist behavior depending on the nature of the linker.  相似文献   
110.
Autophagy is a unique membrane trafficking pathway describing the formation and targeting of double membrane autophagosomes to the vacuole/lysosome. The biogenesis of autophagosomes and their delivery to the vacuole/lysosome depend on multiple membrane fusion events. Using a cell-free system, we have investigated the ability of LC3 and GATE-16, two mammalian Atg8 orthologs, to mediate membrane fusion. We found that both proteins promote tethering and membrane fusion, mediated by the proteins' N-terminal α helices. We further show that short, 10 amino acid long synthetic peptides derived from the N terminus of LC3 or GATE-16 are sufficient to promote membrane fusion. Our data indicate that the fusion activity of LC3 is mediated by positively charged amino acids, whereas the activity of GATE-16 is mediated by hydrophobic interactions. Finally, we demonstrate that LC3 and GATE-16 N termini in general and specific residues needed for the fusion activity are essential for the proteins role in autophagosome biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号