首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3290篇
  免费   226篇
  国内免费   2篇
  3518篇
  2023年   14篇
  2022年   29篇
  2021年   53篇
  2020年   35篇
  2019年   48篇
  2018年   72篇
  2017年   56篇
  2016年   100篇
  2015年   173篇
  2014年   180篇
  2013年   205篇
  2012年   278篇
  2011年   245篇
  2010年   155篇
  2009年   149篇
  2008年   207篇
  2007年   196篇
  2006年   154篇
  2005年   151篇
  2004年   162篇
  2003年   149篇
  2002年   87篇
  2001年   73篇
  2000年   75篇
  1999年   62篇
  1998年   17篇
  1997年   25篇
  1996年   28篇
  1995年   20篇
  1994年   10篇
  1993年   15篇
  1992年   24篇
  1991年   17篇
  1990年   16篇
  1989年   14篇
  1988年   16篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   13篇
  1983年   13篇
  1982年   11篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1975年   12篇
  1974年   9篇
排序方式: 共有3518条查询结果,搜索用时 0 毫秒
91.
92.
93.
This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2) and severe hypoxia (0.1% O2). We found that chenodeoxy cholic acid (CDCA) reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR), a CDCA receptor and its target gene, Small heterodimer partner (SHP) are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein.  相似文献   
94.
A novel mutation in the SCN5A gene is associated with Brugada syndrome   总被引:4,自引:0,他引:4  
Shin DJ  Kim E  Park SB  Jang WC  Bae Y  Han J  Jang Y  Joung B  Lee MH  Kim SS  Huang H  Chahine M  Yoon SK 《Life sciences》2007,80(8):716-724
Brugada syndrome (BS) is an inherited cardiac disorder associated with a high risk of sudden cardiac death and is caused by mutations in the SCN5A gene encoding the cardiac sodium channel alpha-subunit (Na(v)1.5). The aim of this study was to identify the genetic cause of familial BS and characterize the electrophysiological properties of a novel SCN5A mutation (W1191X). Four families and one patient with BS were screened for SCN5A mutations by PCR and direct sequencing. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in tsA201 cells, and the sodium currents (I(Na)) were analyzed using the whole-cell patch-clamp technique. A novel mutation, W1191X, was identified in a family with BS. Expression of the WT or the mutant channel (Na(v)1.5/W1191X) co-transfected with the beta(1)-subunit in tsA201 cells resulted in a loss of function of Na(v)1.5 channels. While voltage-clamp recordings of the WT channel showed a distinct acceleration of Na(v)1.5 activation and fast inactivation kinetics, the Na(v)1.5/W1191X mutant failed to generate any currents. Co-expression of the WT channel and the mutant channel resulted in a 50% reduction in I(Na). No effect on activation and inactivation were observed with this heterozygous expression. The W1191X mutation is associated with BS and resulted in the loss of function of the cardiac sodium channel.  相似文献   
95.
Bacterial lipopolysaccharide (LPS) is a potent stimulator of bone resorption in periodontitis. Co-culture systems of mouse calvaria-derived osteoblasts and bone marrow-derived preosteoclasts were used as an in vitro osteoclast differentiation. This study revealed that co-cultures using ddY or ICR mouse strain responded differently to LPS while responded equally to 1alpha,25(OH)2D3. Thus, the different response to LPS indicates dissimilarity of two mouse stains in their capacity for generating osteoclasts while the two mouse strains share the similarity in response to 1alpha,25(OH)2D3. To identify which cells between osteoblasts and preosteoclasts in the co-culture are responsible for the dissimilarity, the reciprocal co-cultures were performed between ddY and ICR mouse strains. The treatment of 1,25(OH)2D3 to ddY/ICR (osteoblasts from ddY/preosteoclasts from ICR) and ICR/ddY reciprocal co-cultures also showed the similarity. In case of LPS treatment, the results of ddY/ICR were similar to ddY/ddY and the results of the other reciprocal co-culture, ICR/ddY combination, were consistent with those of ICR/ICR. It suggests that the dissimilarity between the two mouse strains may resident in osteoblasts but not in preosteoclasts. Therefore, the osteoblast is responsible for mouse strain-dependent osteoclastogenesis in response to LPS. Although mouse models will continue to provide insights into molecular mechanisms of osteoclastogenesis, caution should be exercised when using different mouse strains, especially ddY and ICR strains as models for osteoclast differentiation.  相似文献   
96.
Isl1(+) cardiovascular progenitors and their downstream progeny play a pivotal role in cardiogenesis and lineage diversification of the heart. The mechanisms that control their renewal and differentiation are largely unknown. Herein, we show that the Wnt/beta-catenin pathway is a major component by which cardiac mesenchymal cells modulate the prespecification, renewal, and differentiation of isl1(+) cardiovascular progenitors. This microenvironment can be reconstituted by a Wnt3a-secreting feeder layer with ES cell-derived, embryonic, and postnatal isl1(+) cardiovascular progenitors. In vivo activation of beta-catenin signaling in isl1(+) progenitors of the secondary heart field leads to their massive accumulation, inhibition of differentiation, and outflow tract (OFT) morphogenic defects. In addition, the mitosis rate in OFT myocytes is significantly reduced following beta-catenin deletion in isl1(+) precursors. Agents that manipulate Wnt signals can markedly expand isl1(+) progenitors from human neonatal hearts, a key advance toward the cloning of human isl1(+) heart progenitors.  相似文献   
97.
We analyzed the in vivo tumor regression activity of high molecular mass poly-gamma-glutamate (gamma-PGA) from Bacillus subtilis sups. chungkookjang. C57BL/6 mice were orally administered 10-, 100-, or 2000-kDa gamma-PGA or beta-glucan (positive control), and antitumor immunity was examined. Our results revealed higher levels of NK cell-mediated cytotoxicity and IFN-gamma secretion in mice treated with higher molecular mass gamma-PGA (2000 kDa) vs those treated with lower molecular mass gamma-PGA (10 or 100 kDa) or beta-glucan. We then examined the effect of oral administration of 10- or 2000-kDa gamma-PGA on protection against B16 tumor challenge in C57BL/6 mice. Mice receiving high molecular mass gamma-PGA (2000 kDa) showed significantly smaller tumor sizes following challenge with the MHC class I-down-regulated tumor cell lines, B16 and TC-1 P3 (A15), but not with TC-1 cells, which have normal MHC class I expression. Lastly, we found that gamma-PGA-induced antitumor effect was decreased by in vivo depletion of NK cells using mAb PK136 or anti-asialo GM1 Ab, and that was completely blocked in NK cell-deficient B6 beige mice or IFN-gamma knockout mice. Taken together, we demonstrated that oral administration of high molecular mass gamma-PGA (2000 kDa) generated significant NK cell-mediated antitumor activity in mice bearing MHC class I-deficient tumors.  相似文献   
98.
99.
The genome of Musa balbisiana spp. contains several infectious endogenous sequences of Banana streak virus (eBSV). We have shown previously that in vitro micropropagation triggers the activation of infectious eBSOLV (endogenous sequences of Banana streak Obino l'Ewai virus ) in the synthetic tetraploid interspecific hybrid FHIA21 (AAAB). In this work, we show that another synthetic tetraploid (AAAB) hybrid and two natural triploid (AAB) plantains are equally prone to the activation of infectious eBSOLV during tissue culture. These results are a strong indication that such activation is a general phenomenon in interspecific Musa cultivars, whether synthetic or natural. We also report the first in-depth study of the correlation between the duration of tissue culture and the level of activation of infectious eBSOLV, and show that specific and common activation patterns exist in these banana plants. We hypothesize that these patterns result from the concomitant activation of infectious eBSOLV and a decrease in the virus titre in neoformed plantlets, resulting from cell multiplication outcompeting virus replication. We provide experimental data supporting this hypothesis. No activation of infectious eBSGFV (endogenous sequences of Banana streak Goldfinger virus) by tissue culture was observed in the two natural AAB plantain cultivars studied here, whereas such activation occurred in the AAAB synthetic hybrid studied. We demonstrate that this differential activation does not result from differences in the structure of eBSGFV, as all banana genomes harbour eaBSGFV-7.  相似文献   
100.
On the basis of high binding affinity at the A(3) adenosine receptor of 3'-aminoadenosine derivatives with hydrogen bonding donor ability, novel 3'-ureidoadenosine analogues were synthesized from 1,2:5,6-di-O-isopropylidene-d-glucose in order to lead to stronger hydrogen bonding than the corresponding 3'-aminoadenosine derivatives. However, the synthesized 3'-ureidoadenosine analogues were totally devoid of binding affinity, because 3'-urea moiety caused steric and electrostatic repulsions at the binding site of the A(3) adenosine receptor, leading to conformational distortion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号