首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3313篇
  免费   235篇
  国内免费   2篇
  2023年   14篇
  2022年   29篇
  2021年   56篇
  2020年   35篇
  2019年   47篇
  2018年   73篇
  2017年   59篇
  2016年   104篇
  2015年   178篇
  2014年   182篇
  2013年   208篇
  2012年   282篇
  2011年   248篇
  2010年   159篇
  2009年   152篇
  2008年   211篇
  2007年   196篇
  2006年   154篇
  2005年   149篇
  2004年   159篇
  2003年   150篇
  2002年   87篇
  2001年   75篇
  2000年   75篇
  1999年   60篇
  1998年   26篇
  1997年   27篇
  1996年   28篇
  1995年   16篇
  1994年   11篇
  1993年   18篇
  1992年   23篇
  1991年   16篇
  1990年   16篇
  1989年   13篇
  1988年   15篇
  1987年   17篇
  1986年   16篇
  1985年   13篇
  1984年   13篇
  1983年   14篇
  1982年   11篇
  1981年   11篇
  1980年   10篇
  1979年   9篇
  1978年   7篇
  1975年   13篇
  1974年   8篇
  1972年   6篇
  1971年   6篇
排序方式: 共有3550条查询结果,搜索用时 31 毫秒
61.
Biomass-derived volatile fatty acid platform for fuels and chemicals   总被引:1,自引:0,他引:1  
The typical biorefinery platforms are sugar, thermochemical (syngas), carbon-rich chains, and biogas platforms, each offering unique advantages and disadvantages. The sugar platform uses hexose and pentose sugars extracted or converted from plant body mass. The thermochemical (syngas) platform entails a chemical or biological conversion process using pyrolysis or gasification of plants to produce biofuels. The carbon-rich chains platform is used to produce biodiesel from long-chain fatty acids or glycerides. In the present work, we suggest a new platform using volatile fatty acids (VFAs) for the production of biofuels and biochemicals production. The VFAs are short-chain fatty acids composed mainly of acetate and butyrate in the anaerobic digestion (AD) process, which does not need sterilization, additional hydrolysis enzymes (cellulose or xylanase), or a high cost pretreatment step. VFAs are easily produced from almost all kinds of biomass with low lignin content (terrestrial, aquatic, and marine biomass) by the AD process. Considering that raw material alone constitutes 40∼80% of biofuel production costs, biofuels made from VFAs derived from waste organic biomass potentially offer significant economical advantage.  相似文献   
62.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   
63.
Melanocortins, besides their central roles, have also recently been reported to regulate adipocyte metabolism. In this study, we attempted to characterize the mechanism underlying alpha-melanocyte-stimulating hormone (MSH)-induced lipolysis, and compared it with that of the adrenocorticotrophin hormone (ACTH) in 3T3-L1 adipocytes. Similar to ACTH, MSH treatment resulted in the release of glycerol into the cell supernatant. The activity of hormone-sensitive lipase, a rate-limiting enzyme, which is involved in lipolysis, was significantly increased by MSH treatment. In addition, a variety of kinases, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) were also phosphorylated as the result of MSH treatment, and their specific inhibitors caused a reduction in MSH-induced glycerol release and HSL activity, indicating that MSH-induced lipolysis was mediated by these kinases. These results suggest that PKA and ERK constitute the principal signaling pathways implicated in the MSH-induced lipolytic process via the regulation of HSL in 3T3-L1 adipocytes.  相似文献   
64.
65.
Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone‐butanol‐ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol‐butanol‐ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab‐scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot‐scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab‐scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1083–1088, 2013  相似文献   
66.
67.
Monoclonal antibodies (MAbs) against Vibrio species that infect humans, fish, and shellfish were developed for application in rapid identifications. The pathogens included Vibrio alginolyticus, V. anguillarum, V. carchariae, V. cholerae, V. damsela, V. furnissii, V. harveyi, V. ordalii, V. parahaemolyticus, and V. vulnificus. Three types of MAbs were selected. The first important group included MAbs that reacted with only a single species. A second group comprised a number of MAbs that reacted with two, taxonomically closely related Vibrio species. For example, of 22 MAbs raised against V. alginolyticus, 6 recognized a 52-kDa flagellar H antigen common to both V. alginolyticus and V. parahaemolyticus; V. anguillarum and V. ordalii also shared antigens. A third group included three genus-specific MAbs that reacted with almost all Vibrio species but did not react with other members of the family Vibrionaceae (e.g., members of the Aeromonas, Photobacterium, and Plesiomonas genera) or a wide range of gram-negative bacteria representing many genera. This last group indicated the possible existence of an antigenic determinant common to Vibrio species. Two of these three genus-specific MAbs reacted with heat-stable antigenic determinants of Vibrio species as well as lipopolysaccharide extracted from Vibrio species. The use of the MAbs in blind tests and diagnosis of clinical isolates indicated that three different types of bacteria, viz., live, formalin-fixed, and sodium azide-killed bacteria, were detected consistently. Overall, it was found that the genus-specific MAbs were very useful for rapidly identifying vibrios in the screening of acute infections, while the species-specific MAbs and others were useful for completing the diagnosis.  相似文献   
68.
69.
70.
Combinatory responses of proinflamamtory cytokines have been examined on the nitric oxide-mediated function in cultured mouse calvarial osteoblasts. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) induced iNOS gene expression and NO production, although these actions were inhibited by L-NG-monomethylarginine (L-NMMA) and decreased alkaline phosphatase (ALPase) activity. Furthermore, NO donors, sodium nitroprusside (SNP) and NONOate dose-dependently elevated ALPase activity. In contrast, transforming-growth factor-β (TGF-β) decreased NO production stimulated by IL-1β, TNF-α and interferon-γ (IFN-γ). iNOS was expressed by mouse calvarial osteoblast cells after stimulation with IL-1β, TNF-α, and IFN-γ. Incubation of mouse calvarial osteoblast cells with the cytokines inhibited growth and ALPase activity. However, TGF-β-treatment abolished these effects of IL-1β, TNF-α and IFN-γ on growth inhibition and stimulation of ALPase in mouse calvarial osteoblast cells. In contrast, IL-1β, TNF-α, and IFN-γ exerted growth-inhibiting effects on mouse calvarial osteoblast cells which were partly NO-dependent. The results suggest that NO may act predominantly as a modulator of cytokine-induced effects on mouse calvarial osteoblast cells and TGF-β is a negative regulator of the NO production stimulated by IL-1β, TNF-α and IFN-γ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号