首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5188篇
  免费   409篇
  国内免费   5篇
  2023年   18篇
  2022年   36篇
  2021年   96篇
  2020年   71篇
  2019年   70篇
  2018年   131篇
  2017年   109篇
  2016年   164篇
  2015年   293篇
  2014年   320篇
  2013年   348篇
  2012年   449篇
  2011年   405篇
  2010年   269篇
  2009年   231篇
  2008年   329篇
  2007年   290篇
  2006年   273篇
  2005年   246篇
  2004年   252篇
  2003年   242篇
  2002年   160篇
  2001年   110篇
  2000年   101篇
  1999年   90篇
  1998年   29篇
  1997年   35篇
  1996年   36篇
  1995年   25篇
  1994年   17篇
  1993年   16篇
  1992年   37篇
  1991年   26篇
  1990年   18篇
  1989年   16篇
  1988年   22篇
  1987年   19篇
  1986年   19篇
  1985年   14篇
  1984年   15篇
  1983年   15篇
  1982年   11篇
  1981年   14篇
  1980年   11篇
  1979年   11篇
  1978年   9篇
  1977年   7篇
  1975年   12篇
  1974年   9篇
  1971年   6篇
排序方式: 共有5602条查询结果,搜索用时 15 毫秒
991.
992.

Background

Non-muscle myosin II (NM II) regulates a wide range of cellular functions, including neuronal differentiation, which requires precise spatio-temporal activation of Rho GTPases. The molecular mechanism underlying the NM II-mediated activation of Rho GTPases is poorly understood. The present study explored the possibility that NM II regulates neuronal differentiation, particularly morphological changes in growth cones and the distal axon, through guanine nucleotide exchange factors (GEFs) of the Dbl family.

Principal Findings

NM II colocalized with GEFs, such as βPIX, kalirin and intersectin, in growth cones. Inactivation of NM II by blebbistatin (BBS) led to the increased formation of short and thick filopodial actin structures at the periphery of growth cones. In line with these observations, FRET analysis revealed enhanced Cdc42 activity in BBS-treated growth cones. BBS treatment also induced aberrant targeting of various GEFs to the distal axon where GEFs were seldom observed under physiological conditions. As a result, numerous protrusions and branches were generated on the shaft of the distal axon. The disruption of the NM II–GEF interactions by overexpression of the DH domains of βPIX or Tiam1, or by βPIX depletion with specific siRNAs inhibited growth cone formation and induced slender axons concomitant with multiple branches in cultured hippocampal neurons. Finally, stimulation with nerve growth factor induced transient dissociation of the NM II–GEF complex, which was closely correlated with the kinetics of Cdc42 and Rac1 activation.

Conclusion

Our results suggest that NM II maintains proper morphology of neuronal growth cones and the distal axon by regulating actin dynamics through the GEF–Rho GTPase signaling pathway.  相似文献   
993.
994.

Background

Pharmacoresistance is a major issue in the treatment of epilepsy. However, the mechanism underlying pharmacoresistance to antiepileptic drugs (AEDs) is still unclear, and few animal models have been established for studying drug resistant epilepsy (DRE). In our study, spontaneous recurrent seizures (SRSs) were investigated by video-EEG monitoring during the entire procedure.

Methods/Principal Findings

In the mouse pilocarpine-induced epilepsy model, we administered levetiracetam (LEV) and valproate (VPA) in sequence. AED-responsive and AED-resistant mice were naturally selected after 7-day treatment of LEV and VPA. Behavioral tests (open field, object exploration, elevated plus maze, and light-dark transition test) and a microRNA microarray test were performed. Among the 37 epileptic mice with SRS, 23 showed significantly fewer SRSs during administration of LEV (n = 16, LEV sensitive (LS) group) or VPA (n = 7, LEV resistant/VPA sensitive (LRVS) group), while 7 epileptic mice did not show any amelioration with either of the AEDs (n = 7, multidrug resistant (MDR) group). On the behavioral assessment, MDR mice displayed distinctive behaviors in the object exploration and elevated plus maze tests, which were not observed in the LS group. Expression of miRNA was altered in LS and MDR groups, and we identified 4 miRNAs (miR-206, miR-374, miR-468, and miR-142-5p), which were differently modulated in the MDR group versus both control and LS groups.

Conclusion

This is the first study to identify a pharmacoresistant subgroup, resistant to 2 AEDs, in the pilocarpine-induced epilepsy model. We hypothesize that modulation of the identified miRNAs may play a key role in developing pharmacoresistance and behavioral alterations in the MDR group.  相似文献   
995.
Exposure of the thyroid to radiation during radiotherapy of the head and neck is often unavoidable. The present study aimed to investigate the protective effect of α-lipoic acid (ALA) on radiation-induced thyroid injury in rats. Rats were randomly assigned to four groups: healthy controls (CTL), irradiated (RT), received ALA before irradiation (ALA + RT), and received ALA only (ALA, 100 mg/kg, i.p.). ALA was treated at 24 h and 30 minutes prior to irradiation. The neck area including the thyroid gland was evenly irradiated with 2 Gy per minute (total dose of 18 Gy) using a photon 6-MV linear accelerator. Greater numbers of abnormal and unusually small follicles in the irradiated thyroid tissues were observed compared to the controls and the ALA group on days 4 and 7 after irradiation. However, all pathologies were decreased by ALA pretreatment. The quantity of small follicles in the irradiated rats was greater on day 7 than day 4 after irradiation. However, in the ALA-treated irradiated rats, the numbers of small and medium follicles were significantly decreased to a similar degree as in the control and ALA-only groups. The PAS-positive density of the colloid in RT group was decreased significantly compared with all other groups and reversed by ALA pretreatment. The high activity index in the irradiated rats was lowered by ALA treatment. TGF-ß1 immunoreactivity was enhanced in irradiated rats and was more severe on the day 7 after radiation exposure than on day 4. Expression of TGF-ß1 was reduced in the thyroid that had undergone ALA pretreatment. Levels of serum pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) did not differ significantly between the all groups. This study provides that pretreatment with ALA decreased the severity of radiation-induced thyroid injury by reducing inflammation and fibrotic infiltration and lowering the activity index. Thus, ALA could be used to ameliorate radiation-induced thyroid injury.  相似文献   
996.
997.
The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.  相似文献   
998.

Background

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK).

Methods

Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test) were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK.

Results

Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants.

Conclusions

No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号