首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5053篇
  免费   368篇
  国内免费   3篇
  2024年   4篇
  2023年   19篇
  2022年   60篇
  2021年   92篇
  2020年   75篇
  2019年   97篇
  2018年   144篇
  2017年   107篇
  2016年   176篇
  2015年   257篇
  2014年   330篇
  2013年   359篇
  2012年   463篇
  2011年   449篇
  2010年   274篇
  2009年   249篇
  2008年   317篇
  2007年   315篇
  2006年   248篇
  2005年   233篇
  2004年   251篇
  2003年   193篇
  2002年   164篇
  2001年   102篇
  2000年   104篇
  1999年   68篇
  1998年   26篇
  1997年   26篇
  1996年   20篇
  1995年   18篇
  1994年   15篇
  1993年   11篇
  1992年   19篇
  1991年   24篇
  1990年   18篇
  1989年   10篇
  1988年   13篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1982年   5篇
  1980年   5篇
  1978年   3篇
  1976年   5篇
  1975年   3篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
  1967年   3篇
排序方式: 共有5424条查询结果,搜索用时 15 毫秒
911.
912.
Chrysin (5,7-dihydroxyflavone) is a natural flavone commonly found in many plants. It has previously been shown to be an anti-tumor agent. In this study, we investigated whether chrysin could alleviate the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice and whether chrysin has an inhibitory effect on nuclear factor (NF)-κB activation in vitro. A significant blunting of weight loss and clinical signs was observed in DSS-exposed, chrysin-treated mice when compared to vehicle-treated mice. This was associated with a remarkable amelioration of the disruption of the colonic architecture, a significant reduction in colonic myeloperoxidase (MPO) activity, and a decrease in the production of inflammatory mediators such as nitric oxide (NO), prostaglandin (PG) E2, and pro-inflammatory cytokines. In addition, chrysin inhibited tumor necrosis factor (TNF)-α-induced activation of NF-κB in IEC-6 cells. These findings suggest that chrysin exerts potentially clinically useful anti-inflammatory effects mediated through the suppression of NF-κB activation.  相似文献   
913.
914.
915.
916.

Background  

Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants) that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago) acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid) via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus -like cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a). Here we brought into culture a novel photosynthetic Paulinella strain (FK01) and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor.  相似文献   
917.

Background  

The identification of the adipocyte-derived obesity gene product, leptin (Ob), and subsequently its association with reproduction in rodents and humans led to speculations that leptin may be involved in the regulation of oocyte and preimplantation embryo development. In mice and pigs, in vitro leptin addition significantly increased meiotic resumption and promoted preimplantation embryo development in a dose-dependent manner. This study was conducted to determine whether leptin supplementation during in vitro maturation (IVM) to horse oocytes could have effects on their developmental capacity after fertilization by IntraCytoplasmic Sperm Injection (ICSI).  相似文献   
918.
Cell growth critically depends on signalling pathways whose regulation is the focus of intense research. Without utilizing a priori knowledge of the relative importance of pathway components, we have applied in silico computational methods to the EGF-induced MAPK cascade. Specifically, we systematically perturbed the entire parameter space, including initial conditions, using a Monte Carlo approach, and investigate which protein components or kinetic reaction steps contribute to the differentiation of ERK responses. The model, based on previous work by Brightman and Fell (2000), is composed of 28 reactions, 27 protein molecules, and 48 parameters from both mass action and Michaelis-Menten kinetics. Our multi-parametric systems analysis confirms that Raf inactivation is one of the key steps regulating ERK responses to be either transient or sustained. Furthermore, the results of amplitude-differential ERK phosphorylations within the transient case are mainly attributed to the balance between activation and inactivation of Ras while duration-differential ERK responses for the sustained case are, in addition to Ras, markedly affected by dephospho-/phosphorylation of both MEK and ERK. Our sub-module perturbations showed that MEK and ERK''s contribution to this differential ERK activation originates from fluctuations in intermediate pathway module components such as Ras and Raf, implicating a cooperative regulatory mode among the key components. The initial protein concentrations of corresponding reactions such as Ras, GAP, and Raf also influence the distinct signalling outputs of ERK activation. We then compare these results with those obtained from a single-parametric perturbation approach using an overall state sensitivity (OSS) analysis. The OSS findings indicate a more pronounced role of ERK''s inhibitory feedback effect on catalysing the dissociation of the SOS complex. Both approaches reveal the presence of multiple specific reactions involved in the distinct dynamics of ERK responses and the cell fate decisions they trigger. This work adds a mechanistic insight of the contribution of key pathway components, thus may support the identification of biomarkers for pharmaceutical drug discovery processes.  相似文献   
919.
Characterization and control of proteolysis of peptides by specific cellular protease is a priori requisite for effective drug discovery. Here, we report the nanomechanical, in situ monitoring of proteolysis of peptide chain attributed to protease (Cathepsin B) by using a resonant nanomechanical microcantilever immersed in a liquid. Specifically, the detection is based on measurement of resonant frequency shift arising from proteolysis of peptides (leading to decrease of cantilever''s overall mass, and consequently, increases in the resonance). It is shown that resonant microcantilever enables the quantification of proteolysis efficacy with respect to protease concentration. Remarkably, the nanomechanical, in situ monitoring of proteolysis allows us to gain insight into the kinetics of proteolysis of peptides, which is well depicted by Langmuir kinetic model. This implies that nanomechanical biosensor enables the characterization of specific cellular protease such as its kinetics.  相似文献   
920.
With the advent of high-throughput technologies for measuring genome-wide expression profiles, a large number of methods have been proposed for discovering diagnostic markers that can accurately discriminate between different classes of a disease. However, factors such as the small sample size of typical clinical data, the inherent noise in high-throughput measurements, and the heterogeneity across different samples, often make it difficult to find reliable gene markers. To overcome this problem, several studies have proposed the use of pathway-based markers, instead of individual gene markers, for building the classifier. Given a set of known pathways, these methods estimate the activity level of each pathway by summarizing the expression values of its member genes, and use the pathway activities for classification. It has been shown that pathway-based classifiers typically yield more reliable results compared to traditional gene-based classifiers. In this paper, we propose a new classification method based on probabilistic inference of pathway activities. For a given sample, we compute the log-likelihood ratio between different disease phenotypes based on the expression level of each gene. The activity of a given pathway is then inferred by combining the log-likelihood ratios of the constituent genes. We apply the proposed method to the classification of breast cancer metastasis, and show that it achieves higher accuracy and identifies more reproducible pathway markers compared to several existing pathway activity inference methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号