首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   54篇
  655篇
  2021年   11篇
  2019年   8篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2015年   15篇
  2014年   19篇
  2013年   22篇
  2012年   24篇
  2011年   33篇
  2010年   26篇
  2009年   23篇
  2008年   32篇
  2007年   27篇
  2006年   17篇
  2005年   25篇
  2004年   23篇
  2003年   18篇
  2002年   20篇
  2001年   16篇
  2000年   22篇
  1999年   18篇
  1998年   6篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1993年   6篇
  1992年   12篇
  1991年   10篇
  1990年   5篇
  1989年   11篇
  1988年   10篇
  1987年   10篇
  1986年   18篇
  1985年   8篇
  1984年   9篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1972年   5篇
  1971年   3篇
  1968年   4篇
  1967年   5篇
  1964年   3篇
排序方式: 共有655条查询结果,搜索用时 0 毫秒
71.
Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues 952ENI954 to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.  相似文献   
72.
Howard's (2005) claim that male dominance in chess is 'consistent with the evolutionary psychology view that males predominate at high achievement levels at least partly because of ability differences' (p. 378) is based on the premise that top level chess skill depends on a high level of IQ and visuospatial abilities. This premise is not supported by empirical evidence. In 1927 Djakow et al. first showed that world-class chess players do not have exceptional intellectual abilities. This finding has subsequently been confirmed many times. Different participation rates, or differences in the amount of practice, motivation and interest for chess in male and female chess players, may provide a better explanation for gender differences in chess performance.  相似文献   
73.
We determined the optimal conditions for high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) of oligosaccharides (OS) released from neisserial lipooligosaccharides (LOS) by mild acid hydrolysis. We efficiently obtained detailed composition, sequence, and linkage information about high Mr LOS. We found that HPAE-PAD can discriminate isobaric (same Mr) molecules of different structure, for example, nLc4 and Gb4, distinguish alpha from beta chain extensions, and determine the number of phosphoethanolamine (PEA) substituents. HPAE-PAD provided quantitative information that could be used to compare the relative abundances of OS. We used HPAE-PAD to identify all of the known LOS alpha chain antennae. When used with antibody-binding profiles and exoglycosidase digestion results, HPAE-PAD can provide nearly complete structures rapidly.  相似文献   
74.
Human ileal bile acid binding protein (I-BABP) is a member of the family of intracellular lipid-binding proteins and is thought to play a role in the enterohepatic circulation of bile salts. Our group has previously shown that human I-BABP binds two molecules of glycocholate (GCA) with low intrinsic affinity but an extraordinary high degree of positive cooperativity. Besides the strong positive cooperativity, human I-BABP exhibits a high degree of site selectivity in its interactions with GCA and glycochenodeoxycholate (GCDA), the two major bile salts in humans. In this study, on the basis of our first generation nuclear magnetic resonance (NMR) structure of the ternary complex of human I-BABP with GCA and GCDA, we introduced single-residue mutations at certain key positions in the binding pocket that might disrupt a hydrogen-bonding network, a likely way of energetic communication between the two sites. Macroscopic binding parameters were determined using isothermal titration calorimetry, and site selectivity was monitored by NMR spectroscopy of isotopically enriched bile salts. According to our results, cooperativity and site selectivity are not linked in human I-BABP. While cooperativity is governed by a subtle interplay of entropic and enthalpic contributions, site selectivity appears to be determined by more localized enthalpic effects. Possible communication pathways between the two binding sites are discussed.  相似文献   
75.
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic FHS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.  相似文献   
76.
The prednisolone C-21 heteroaryl thioethers have been synthesized and evaluated in cell based transrepression and transactivation assays. Most of the compounds demonstrated weak transactivational activity in both human and rat tyrosineaminotransferase functional assay while keeping potent anti-inflammatory activity. The benzimidazole thioether 7 exhibited comparable anti-inflammatory activity and improved safety profile compared to the classical oral steroid prednisolone.  相似文献   
77.
78.
Delta-aminolevulinic acid (δ-ALA) is a heme precursor implicated in neurological complications associated with porphyria and tyrosinemia type I. Delta-ALA is also elevated in the urine of animals and patients treated with the investigational drug dichloroacetate (DCA). We postulated that δ-ALA may be responsible, in part, for the peripheral neuropathy observed in subjects receiving DCA. To test this hypothesis, myelinating cocultures of Schwann cells and sensory neurons were exposed to δ-ALA (0.1–1 mM) and analyzed for the expression of neural proteins and lipids and markers of oxidative stress. Exposure of myelinating samples to δ-ALA is associated with a pronounced reduction in the levels of myelin-associated lipids and proteins, including myelin protein zero and peripheral myelin protein 22. We also observed an increase in protein carbonylation and the formation of hydroxynonenal and malondialdehyde after treatment with δ-ALA. Studies of isolated Schwann cells and neurons indicate that glial cells are more vulnerable to this pro-oxidant than neurons, based on a selective decrease in the expression of mitochondrial respiratory chain proteins in glial, but not in neuronal, cells. These results suggest that the neuropathic effects of δ-ALA are attributable, at least in part, to its pro-oxidant properties which damage myelinating Schwann cells.  相似文献   
79.

Background

Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease.

Methodology/Principal Findings

We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue), antiangiogenic interferon α (overexpressed in the scleroderma dermis) and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon α and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal.

Conclusion/Significance

These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease. Since rarefaction has been little studied, these data may have implications for other diseases characterized by loss of capillaries including hypertension, congestive heart failure and scar formation.  相似文献   
80.
Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin alpha2beta1(hi) and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 microg/ml insulin (DMEM+10% FBS+Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号