首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   12篇
  国内免费   1篇
  2024年   2篇
  2023年   7篇
  2022年   8篇
  2021年   11篇
  2020年   13篇
  2019年   26篇
  2018年   5篇
  2017年   18篇
  2016年   16篇
  2015年   8篇
  2014年   13篇
  2013年   14篇
  2012年   18篇
  2011年   12篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   12篇
  2006年   6篇
  2005年   1篇
  2003年   2篇
  1996年   1篇
  1990年   1篇
排序方式: 共有211条查询结果,搜索用时 421 毫秒
141.
142.
143.
An efficient vaccine against Hepatitis C virus (HCV) infection requires induction of strong humoral and cellular responses against viral proteins. We evaluated the immunogenicity of HCV core protein (HCVcp), a prime vaccine candidate, formulated in various human compatible adjuvants. An Escherichia coli-expressed HCVcp, purified in native conditions was used for murine immunization in separate groups of: free HCVcp (Ag), Ag+C/IFA (Freunds), Ag+CpG, Ag+M720 (Montanide ISA 720), Ag+F127 (Pluronic acid) and cocktails of Ag+F127+CpG and Ag+M720+CpG. Mice immunized with M720(+CpG) developed the highest HCVcp-specific titers of total IgG, IgG1, 2a, 2b, and that of IFN-gamma and IL-4 cytokines compared to all other groups. HCVcp-specific-CTLs against relevant MHC class I peptides were detected only for Ag+M720+CpG, Ag+M720, and Ag+CpG groups and could be blocked by antimouse-CD8 antibodies. While CTLs were stable, only F127 formulated groups demonstrated detectable IgG antibodies one year post-immunization. Hence, HCVcp formulated in M720 (with a synergistic effect by inclusion of CpG) could induce balanced and strong Th1/Th2 responses with long-lived CD4(-)CD8(+) CTLs.  相似文献   
144.
Cocell polymers can be the best implants for replacing bone defects in patients. The pluripotent stem cells produced from the patient and the nanofibrous polymeric scaffold that can be completely degraded in the body and its produced monomers could be also usable are the best options for this implant. In this study, electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated and characterized and then osteogenic differentiation of the human-induced pluripotent stem cells (iPSCs) was investigated while cultured on PHBV scaffold. MTT results showed that cultured iPSCs on PHBV proliferation were increased compared to those cultured on tissue culture polystyrene (TCPS) as the control. Alkaline phosphatase (ALP) activity and calcium content were also significantly increased in iPSCs cultured on PHBV compared to the cultured on TCPS under osteogenic medium. Gene expression evaluation demonstrated that Runx2, collagen type I, ALP, osteonectin, and osteocalcin were upregulated in iPSCs cultured on PHBV scaffold in comparison with those cultured on TCPS for 2 weeks. Western blot analysis have shown that osteocalcin and osteopontin expression as two major osteogenic markers were increased in iPSCs cultured on PHBV scaffold. According to the results, nanofiber-based PHBV has a promising potential to increase osteogenic differentiation of the stem cells and iPSCs-PHBV as a cell-co-polymer construct demonstrated that has a great efficiency for use as a bone tissue engineered bioimplant.  相似文献   
145.
Curcumin (diferuloylmethane), a component of the yellow powder prepared from the roots of Curcuma longa or Zingiberaceae (known as turmeric) is not only widely used to color and flavor food but also used as a pharmaceutical agent. Curcumin demonstrates anti-inflammatory, anticarcinogenic, antiaging, and antioxidant activity, as well as efficacy in wound healing. Notably, curcumin is a hormetic agent (hormetin), as it is stimulatory at low doses and inhibitory at high doses. Hormesis by curcumin could be also a particular function at low doses (i.e., antioxidant behavior) and another function at high dose (i.e., induction of autophagy and cell death). Recent findings suggest that curcumin exhibits biphasic dose–responses on cells, with low doses having stronger effects than high doses; examples being activation of the mitogen-activated protein kinase signaling pathway or antioxidant activity. This indicates that many effects induced by curcumin are dependent on dose and some effects might be greater at lower doses, indicative of a hormetic response. Despite the consistent occurrence of hormetic responses of curcumin in a wide range of biomedical models, epidemiological and clinical trials are needed to assess the nature of curcumin’s dose–response in humans. Fortunately, more than one hundred clinical trials with curcumin and curcumin derivatives are ongoing. In this review, we provide the first comprehensive analysis supportive of the hormetic behavior of curcumin and curcumin derivatives.  相似文献   
146.
147.
148.
149.
A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys‐CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H2O2. Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10?6 to 2.7 × 10?5 M for phenylalanine and 1.0 × 10?7 to 3.0 × 10?5 M for tryptophan, respectively. The effect of various parameters such as Cys‐CuNC concentration, H2O2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained.  相似文献   
150.
Cyclophilins (CYPs) belong to the immunophilin superfamily, having the peptidyl prolyl cis/trans isomerase activity that can catalyze the cis/trans isomerisation process of proline residues. Previous studies have shown their importance in plants, but no comprehensive analysis of maize CYP family has been reported. In the present study, a whole-genome-wide analysis of maize CYP family was performed and 39 ZmCYP genes (ZmCYP1 to ZmCYP39) were identified from maize genome, which were unequally distributed on maize ten chromosomes. Phylogenetic analysis revealed a weak relationship among these ZmCYP genes. Furthermore, their gene structure and motif patterns also displayed variant within the gene family. Four segmental and one tandem duplicated gene pairs were found from 39 ZmCYP genes, respectively, indicating their roles in the expansion of maize CYP family. Expression analysis of 39 ZmCYP genes in maize tissues showed their differential tissue specific expression patterns. Quantitative real-time PCR analysis of 19 selected ZmCYP genes under salinity stress indicated their stress-inducible expression profile. Heterologous expression of ZmCYP15 in E. coli enhanced tolerance against abiotic stress. Subcellular localization analysis indicated ZmCYP15 was located in nucleus and cytoplasm. Our study describes the importance of the maize CYP gene family in stress response, and provides a reference for future study and application for maize genetic improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号