首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3969篇
  免费   250篇
  国内免费   3篇
  2023年   20篇
  2022年   42篇
  2021年   94篇
  2020年   64篇
  2019年   73篇
  2018年   122篇
  2017年   91篇
  2016年   166篇
  2015年   216篇
  2014年   214篇
  2013年   320篇
  2012年   342篇
  2011年   325篇
  2010年   219篇
  2009年   144篇
  2008年   241篇
  2007年   233篇
  2006年   219篇
  2005年   196篇
  2004年   169篇
  2003年   152篇
  2002年   151篇
  2001年   31篇
  2000年   17篇
  1999年   30篇
  1998年   34篇
  1997年   28篇
  1996年   24篇
  1995年   24篇
  1994年   19篇
  1993年   19篇
  1992年   28篇
  1991年   17篇
  1990年   11篇
  1989年   12篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   11篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
排序方式: 共有4222条查询结果,搜索用时 15 毫秒
101.
Sorghum with its remarkable adaptability to drought and high temperature provides a model system for grass genomics and resource for gene discovery especially for abiotic stress tolerance. Group 3 LEA genes from barley and rice have been shown to play crucial role in abiotic stress tolerance. Here, we present a genome-wide analysis of LEA3 genes in sorghum. We identified four genes encoding LEA3 proteins in the sorghum genome and further classified them into LEA3A and LEA3B subgroups based on the conservation of LEA3 specific motifs. Further, expression pattern of these genes were analyzed in seeds during development and vegetative tissues under abiotic stresses. SbLEA3A group genes showed expression at early stage of seed development and increased significantly at maturity, while SbLEA3B group genes expressed only in matured seeds. Expression of SbLEA3 genes in response to abiotic stresses such as soil moisture deficit (drought), osmotic, salt, and temperature stresses, and exogenous ABA treatments was also studied in the leaves of 2-weeks-old seedlings. ABA and drought induced the expression of all LEA3 genes, while cold and heat stress induced none of them. Promoter analysis revealed the presence of multiple ABRE core cis-elements and a few low temperature response (LTRE)/drought responsive (DRE) cis-elements. This study suggests non-redundant function of LEA3 genes in seed development and stress tolerance in sorghum.  相似文献   
102.
Lithium (Li) is a trace element that is essential in the human diet due to its importance for health and proper functioning of an organism. However, the biological activity of this metal in crop plants, which are the primary dietary sources of Li, is still poorly understood. The aim of the presented study was to comparatively analyse two Li chemical forms on the growth, as well as the l-ascorbic acid content, the Li accumulation and translocation in butterhead lettuce (Lactuca sativa L. var. capitata) cv. Justyna. The plants were grown in a nutrient solution enriched with Li in the form of LiCl or LiOH at the following concentrations: 0, 2.5, 20, 50 or 100 mg?Li?dm?3. The obtained results indicate that the presence of Li+ ions in the root environment reduced the yield of edible parts of the lettuce if the Li concentration in a nutrient solution had reached 20 mg?Li?dm?3. However, a yield reduction under these conditions was found to be significant only for LiOH. In plants exposed to 50 mg?Li?dm?3, both shoot and root fresh weights (FW) significantly decreased, regardless of the supplied Li chemical form. On the other hand, under the lowest LiOH dose, a significant increase in the root FW was noted, suggesting beneficial effects of Li on the growth of lettuce plants. However, applied Li concentrations and forms did not affect the l-ascorbic acid content in the lettuce leaves. Regardless of which Li form was used, Li accumulated mainly in the root tissues. An exception was the higher concentration of this metal in the shoots than in the roots of plants supplied with 100 mg?Li?dm?3 in LiCl, and there were almost the same Li concentrations in both examined organs of plants supplied with 100 mg?Li?dm?3 in LiOH. The effectiveness of Li translocation from roots to shoots rose with increasing Li concentrations in the growth medium, and this suggests a relatively ready translocation of this metal throughout the plant. Moreover, these results suggest that Li toxicity in lettuce plants is related to a high accumulation of this element in the root and shoot tissues, causing a drastic reduction in the yield, in the presence either of LiCl or LiOH, but not affecting the l-ascorbic acid accumulation in the leaves.  相似文献   
103.
The aim of this study was to assess the metabolic and physiological changes in rats fed a diet high in fat, fructose, and salt, and with excess iron level. Mineral status was also estimated. Wistar rats were assigned to groups fed either a standard control diet (C) or a diet high in fat, fructose, and salt. The noncontrol diets contained either normal (M) or high level (MFe) of iron. After 6 weeks, the length and weight of the rats were measured, and the animals were euthanized. The kidneys and gonads were collected, and blood samples were taken. Serum levels of insulin, nitric oxide, and iron were measured. The iron, zinc, copper, and calcium concentrations of tissues were determined. It was found that the M diet led to a significant increase in the relative kidney mass of the rats compared with the control group. Among the rats fed the M diet, markedly higher serum level of iron and lower levels of zinc and copper were observed in tissues, while significantly higher calcium levels were found in the gonads. The MFe diet resulted in decreased obesity index, insulin level, and nitric oxide serum concentration in the rats, when compared with both the M and C diets. The high iron level in the modified diet increased the relative mass of the gonads. The excess iron level in the diet disturbed the zinc, copper, and calcium status of tissues. The decrease in insulin and nitric oxide in rats fed the diet high in iron, fat, fructose, and salt was associated with disorders of zinc, copper, and calcium status, as well as with an increase in the relative mass of the gonads.  相似文献   
104.
N-Linked glycosylation is an essential post-translational protein modification in the eukaryotic cell. The initial transfer of an oligosaccharide from a lipid carrier onto asparagine residues within a consensus sequon is catalyzed by oligosaccharyltransferase (OST). The first X-ray structure of a complete bacterial OST enzyme, Campylobacter lari PglB, was recently determined. To understand the mechanism of PglB, we have quantified sequon binding and glycosylation turnover in vitro using purified enzyme and fluorescently labeled, synthetic peptide substrates. Using fluorescence anisotropy, we determined a dissociation constant of 1.0 μm and a strict requirement for divalent metal ions for consensus (DQNAT) sequon binding. Using in-gel fluorescence detection, we quantified exceedingly low glycosylation rates that remained undetected using in vivo assays. We found that an alanine in the −2 sequon position, converting the bacterial sequon to a eukaryotic one, resulted in strongly lowered sequon binding, with in vitro turnover reduced 50,000-fold. A threonine is preferred over serine in the +2 sequon position, reflected by a 4-fold higher affinity and a 1.2-fold higher glycosylation rate. The interaction of the +2 sequon position with PglB is modulated by isoleucine 572. Our study demonstrates an intricate interplay of peptide and metal binding as the first step of protein N-glycosylation.  相似文献   
105.
106.
Cicer anatolicum, a perennial species, has ascochyta blight resistance superior to that found in the cultivated chickpea. However, hybridization barriers during early stages of embryo development curtail access to this trait. Since hormones play an essential role in early embryo development, we have determined the hormone profiles of 4-, 8-, and 12-day old seeds from a Canadian chickpea (Cicer arietinum L.) cv. CDC Xena, from Indian cvs. Swetha and Bharati, and from a perennial accession of C. anatolicum (PI 383626). Indole-3-acetic acid content peaked on day 4 in CDC Xena, on day 8 in both Indian cultivars but only on day 12 in C. anatolicum. The cytokinins, isopentenyladenosine (iPA) and trans zeatin riboside (tZR) were predominant in CDC Xena and Swetha seeds on day 4, whereas cis zeatin riboside was the major component in Bharati. In C. anatolicum, iPA maxed out on day 4 and tZR on day 12. The bioactive gibberellin GA1 spiked on day 4 in CDC Xena and Bharati, on day 8 in Swetha but only on day 12 in C. anatolicum. Eight-day old seeds had the highest abscisic acid content in the cultivars but spiked on day 12 in the perennial species. The hormone profiles of the perennial species showed delayed spikes in all four hormone groups indicating that there is a mismatch in the hormone requirements of the different embryos. Improving synchronization of early seed hormone profiles of cultivated and perennial chickpea should improve interspecific hybrid production.  相似文献   
107.
A mixed culture from an anaerobic biowaste digester was enriched on propionate and used to investigate interspecies hydrogen transfer in dependence of spatial distances between propionate degraders and methanogens. From 20.3 mM propionate, 20.8 mM acetate and 15.5 mM methane were formed. Maximum specific propionate oxidation and methane formation rates were 49 and 23 mmol?mg?1?day?1, respectively. Propionate oxidation was inhibited by only 20 mM acetate by about 50 %. Intermediate formate formation during inhibited methanogensis was observed. The spatial distribution and the biovolume fraction of propionate degraders and of methanogens in relation to the total population during aggregate formation were determined. Measurements of interbacterial distances were conducted with fluorescence in situ hybridization by application of group-specific 16S rRNA-targeted probes and 3D image analyses. With increasing incubation time, floc formation and growth up to 54 μm were observed. Propionate degraders and methanogens were distributed randomly in the flocs. The methanogenic biovolume fraction was high at the beginning and remained constant over 42 days, whereas the fraction of propionate degraders increased with time during propionate feeding. Interbacterial distances between propionate degraders and methanogens decreased with time from 5.30 to 0.29 μm, causing an increase of the maximum possible hydrogen flux from 1.1 to 10.3 nmol?ml?1?min?1. The maximum possible hydrogen flux was always higher than the hydrogen formation and consumption rate, indicating that reducing the interspecies distance by aggregation is advantageous in complex ecosystems.  相似文献   
108.
Despite improved treatment options, glioblastoma multiforme (GBM) remains the most aggressive brain tumour with the shortest post-diagnostic survival. Arsenite (As2O3) is already being used in the treatment of acute promyelocytic leukaemia (APL), yet its effects on GBM have not been evaluated in detail. In U87MG cell monolayers, we have previously shown that arsenite cytotoxicity significantly increases upon transient inhibition of lysosomal protease Cathepsin L (CatL). As multicellular spheroids more closely represent in vivo tumours, we aimed to evaluate the impact of permanent CatL silencing on arsenite treatment in U87MG spheroids. CatL was stably silenced using shRNA expression plasmid packed lentiviruses. By using metabolic- and cell viability assays, we demonstrated that long-term CatL silencing significantly increased arsenite cytotoxicity in U87MG spheroids. Silenced CatL also increased arsenite-mediated apoptosis in spheroids via elevated p53 expression, Bax/Bcl2 ratio and caspase 3/7 activity, though with lower efficacy than in monolayers. Arsenite cytotoxicity was enhanced by lower CatL activity, since similar cytotoxicity increase was also observed using the novel CatL inhibitor AT094. The results have significant translational impact, since stable CatL silencing would enable the application of lower systemic doses of arsenite to achieve the desired cytotoxic effects on GBMs in vivo.  相似文献   
109.
The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.  相似文献   
110.
The phytosociological affiliation of Tephroseris longifolia subsp. moravica, species of European importance, was studied in relation to two closely related species of the genus Tephroseris which have overlapping distribution within the Western Carpathian Mts: T. intergrifolia and T. crispa. The main aim was to compare plant communities inhabited by the three taxa, to assess the major environmental gradients responsible for variation in their distribution and to estimate ecological indicator values for Tephroseris longifolia subsp. moravica. T. longifolia subsp. moravica was recorded in nine localities in the Slovakia and Czech Republic where it occurs in very specific site conditions of ecotone habitats. Its phytosociological affiliation is restricted to grasslands of the alliances Bromion erecti and Arrhenatherion elatioris and to the ecotone vegetation between these grasslands and beech forests. T. integrifolia occurs most frequently in the Diantho lumnitzeri-Seslerion, Bromion erecti and Quercion pubescenti-petraeae alliances. T. crispa occurs predominantly in communities of the Calthion palustris alliance and Scheuchzerio-Caricetea fuscae, Mulgedio-Aconitetea and Montio-Cardaminetea classes. The major gradient responsible for variation in species composition of communities inhabited by the studied taxa was associated with moisture and nutrient content. The vascular plant-based ecological indicator values for Tephroseris longifolia subsp. moravica calculated from phytosociological relevés with its occurrence were set for light — 6, temperature — 5, continentality — 4, moisture — 5, soil reaction — 6 and nutrients — 5. We conclude that the studied taxon has intermediate relationship to the most of the studied factors in comparison with two related species, T. crispa and T. integrifolia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号