首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3986篇
  免费   250篇
  国内免费   3篇
  4239篇
  2023年   21篇
  2022年   53篇
  2021年   94篇
  2020年   64篇
  2019年   73篇
  2018年   122篇
  2017年   91篇
  2016年   166篇
  2015年   217篇
  2014年   214篇
  2013年   321篇
  2012年   342篇
  2011年   325篇
  2010年   219篇
  2009年   144篇
  2008年   241篇
  2007年   233篇
  2006年   220篇
  2005年   196篇
  2004年   169篇
  2003年   152篇
  2002年   151篇
  2001年   31篇
  2000年   17篇
  1999年   30篇
  1998年   34篇
  1997年   28篇
  1996年   24篇
  1995年   24篇
  1994年   19篇
  1993年   19篇
  1992年   28篇
  1991年   17篇
  1990年   11篇
  1989年   12篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   8篇
  1984年   7篇
  1983年   11篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
排序方式: 共有4239条查询结果,搜索用时 15 毫秒
941.
942.
Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development.  相似文献   
943.
Lysosomal membrane permeabilization (LMP) contributes to tissue involution, degenerative diseases, and cancer therapy. Its investigation has, however, been hindered by the lack of sensitive methods. Here, we characterize and validate the detection of galectin puncta at leaky lysosomes as a highly sensitive and easily manageable assay for LMP. LGALS1/galectin-1 and LGALS3/galectin-3 are best suited for this purpose due to their widespread expression, rapid translocation to leaky lysosomes and availability of high-affinity antibodies. Galectin staining marks individual leaky lysosomes early during lysosomal cell death and is useful when defining whether LMP is a primary or secondary cause of cell death. This sensitive method also reveals that cells can survive limited LMP and confirms a rapid formation of autophagic structures at the site of galectin puncta. Importantly, galectin staining detects individual leaky lysosomes also in paraffin-embedded tissues allowing us to demonstrate LMP in tumor xenografts in mice treated with cationic amphiphilic drugs and to identify a subpopulation of lysosomes that initiates LMP in involuting mouse mammary gland. The use of ectopic fluorescent galectins renders the galectin puncta assay suitable for automated screening and visualization of LMP in live cells and animals. Thus, the lysosomal galectin puncta assay opens up new possibilities to study LMP in cell death and its role in other cellular processes such as autophagy, senescence, aging, and inflammation.  相似文献   
944.
945.
To identify host genes affecting replication of Tomato bushy stunt virus (TBSV), a small model positive-stranded RNA virus, we overexpressed 5,500 yeast proteins individually in Saccharomyces cerevisiae, which supports TBSV replication. In total, we identified 141 host proteins, and overexpression of 40 of those increased and the remainder decreased the accumulation of a TBSV replicon RNA. Interestingly, 36 yeast proteins were identified previously by various screens, greatly strengthening the relevance of these host proteins in TBSV replication. To validate the results from the screen, we studied the effect of protein kinase C1 (Pkc1), a conserved host kinase involved in many cellular processes, which inhibited TBSV replication when overexpressed. Using a temperature-sensitive mutant of Pkc1p revealed a high level of TBSV replication at a semipermissive temperature, further supporting the idea that Pkc1p is an inhibitor of TBSV RNA replication. A direct inhibitory effect of Pkc1p was shown in a cell-free yeast extract-based TBSV replication assay, in which Pkc1p likely phosphorylates viral replication proteins, decreasing their abilities to bind to the viral RNA. We also show that cercosporamide, a specific inhibitor of Pkc-like kinases, leads to increased TBSV replication in yeast, in plant single cells, and in whole plants, suggesting that Pkc-related pathways are potent inhibitors of TBSV in several hosts.  相似文献   
946.
Polar marine ecosystems’ functioning is known to be strongly affected by the seasonality of water column production. However, a response of benthic organisms may range from close coupling to total decoupling from seasonal variability of environmental processes, depending on a feeding strategy. In this study, we used a multi-method approach (gut content, lipid and stable isotope analyses) to examine trophic ecology and major food sources of a large set of Arctic sub-littoral amphipods, and to evaluate whether their feeding strategies undergo seasonal changes. The wide range of δ15N values (5.45-12.43‰) indicates that amphipods form a trophic continuum from primary herbivores to carnivores/scavengers. Three main feeding modes, namely scavenging/predatory, deposit-feeding/predatory and phytodetrivory, were distinguished based on the multivariate analysis of whole fatty acid profiles. Total lipid content was low in all species and included primarily short-term energy reserves of triacylglycerols. In general, amphipods feeding habits appeared to be independent of the seasonal phytodetritial pulses. Low reliance on lipid reserves and lack of major changes in the trophic strategies over time suggest that these crustaceans feed continuously, taking advantage of a variety of food sources that are available year-round in shallow polar waters.  相似文献   
947.
Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants.  相似文献   
948.
S100A1 is a member of the Ca2+-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca2+ homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys85 S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca2+-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys85 thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca2+ signal transmitter sensitive to NO/redox equilibrium within cells.  相似文献   
949.
Members of the ATP-binding cassette (ABC) transporter family are essential proteins in species as diverse as archaea and humans. Their domain architecture has remained relatively fixed across these species, with rare exceptions. Here, we show one exception to be the trigalactosyldiacylglycerol 1, 2, and 3 (TGD1, -2, and -3) putative lipid transporter located at the chloroplast inner envelope membrane. TGD2 was previously shown to be in a complex of >500 kDa. We demonstrate that this complex also contains TGD1 and -3 and is very stable because it cannot be broken down by gentle denaturants to form a "core" complex similar in size to standard ABC transporters. The complex was purified from Pisum sativum (pea) chloroplast envelopes by native gel electrophoresis and examined by mass spectrometry. Identified proteins besides TGD1, -2, or -3 included a potassium efflux antiporter and a TIM17/22/23 family protein, but these were shown to be in separate high molecular mass complexes. Quantification of the complex components explained the size of the complex because 8-12 copies of the substrate-binding protein (TGD2) were found per functional transporter.  相似文献   
950.
The present study examines chromosome and genome size evolution in Luzula (woodrush; Juncaceae), a monocot genus with holocentric chromosomes. Detailed karyotypes and genome size estimates were obtained for seven Luzula spp., and these were combined with additional data from the literature to enable a comprehensive cytological analysis of the genus. So that the direction of karyotype and genome size changes could be determined, the cytological data were superimposed onto a phylogenetic tree based on the trnL‐F and internal transcribed spacer (ITS) DNA regions. Overall, Luzula shows considerable cytological variation both in terms of chromosome number (2n = 6–66) and genome size (15‐fold variation; 2C = 0.56–8.51 pg; 547.7–8322.8 Mb). In addition, there is considerable diversity in the genomic mechanisms responsible, with the range of karyotypes arising via agmatoploidy (chromosome fission), symploidy (chromosome fusion) and/or polyploidy accompanied, in some cases, by the amplification or elimination of DNA. Viewed in an evolutionary framework, no broad trend in karyotype or genome evolution was apparent across the genus; instead, different mechanisms of karyotype evolution appear to be operating in different clades. It is clear that Luzula exhibits considerable genomic flexibility and tolerance to large, genome‐scale changes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 529–541.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号