首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4200篇
  免费   284篇
  国内免费   4篇
  4488篇
  2023年   23篇
  2022年   53篇
  2021年   95篇
  2020年   64篇
  2019年   74篇
  2018年   128篇
  2017年   96篇
  2016年   172篇
  2015年   227篇
  2014年   223篇
  2013年   337篇
  2012年   352篇
  2011年   334篇
  2010年   230篇
  2009年   152篇
  2008年   254篇
  2007年   244篇
  2006年   230篇
  2005年   205篇
  2004年   179篇
  2003年   156篇
  2002年   155篇
  2001年   33篇
  2000年   25篇
  1999年   43篇
  1998年   37篇
  1997年   29篇
  1996年   25篇
  1995年   27篇
  1994年   19篇
  1993年   19篇
  1992年   31篇
  1991年   18篇
  1990年   13篇
  1989年   13篇
  1988年   12篇
  1987年   10篇
  1986年   14篇
  1985年   9篇
  1984年   12篇
  1983年   12篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1975年   5篇
  1974年   6篇
排序方式: 共有4488条查询结果,搜索用时 15 毫秒
101.
102.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   
103.
Chemerin, a chemoattractant ligand for chemokine-like receptor 1 (CMKLR1) is predicted to share similar tertiary structure with antibacterial cathelicidins. Recombinant chemerin has antimicrobial activity. Here we show that endogenous chemerin is abundant in human epidermis, and that inhibition of bacteria growth by exudates from organ cultures of primary human skin keratinocytes is largely chemerin-dependent. Using a panel of overlapping chemerin-derived synthetic peptides, we demonstrate that the antibacterial activity of chemerin is primarily mediated by Val66-Pro85, which causes direct bacterial lysis. Therefore, chemerin is an antimicrobial agent in human skin.  相似文献   
104.
The Cu(I) catalyzed Huisgen 1,3‐dipolar azide‐alkyne cycloaddition (CuAAC) was applied for a nucleoside‐peptide bioconjugation. Systemin (Sys), an 18‐aa plant signaling peptide naturally produced in response to wounding or pathogen attack, was chemically synthesized as its N‐propynoic acid functionalized analog (Prp‐Sys) using the SPPS. Next, CuAAC was applied to conjugate Prp‐Sys with 3′‐azido‐2′,3′‐dideoxythymidine (AZT), a model cargo molecule. 1,4‐Linked 1,2,3‐triazole AZT‐Sys conjugate was designed to characterize the spreading properties and ability to translocate of cargo molecules of systemin. CuAAC allowed the synthesis of the conjugate in a chemoselective and regioselective manner, with high purity and yield. The presence of Cu(I) ions generated in situ drove the CuAAC reaction to completion within a few minutes without any by‐products. Under typical separation conditions of phosphate ‘buffer’ at low pH and uncoated fused bare‐silica capillary, an increasing peak intensity assigned to triazole‐linked AZT‐Sys conjugate was observed using capillary electrophoresis (CE) during CuAAC. CE analysis showed that systemin peptides are stable in tomato leaf extract for up to a few hours. CE‐ESI‐MS revealed that the native Sys and its conjugate with AZT are translocated through the tomato stem and can be directly detected in stem exudates. The results show potential application of systemin as a transporter of low molecular weight cargo molecules in tomato plant and of CE method to characterize a behavior of plant peptides and its analogs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
105.
Sorghum with its remarkable adaptability to drought and high temperature provides a model system for grass genomics and resource for gene discovery especially for abiotic stress tolerance. Group 3 LEA genes from barley and rice have been shown to play crucial role in abiotic stress tolerance. Here, we present a genome-wide analysis of LEA3 genes in sorghum. We identified four genes encoding LEA3 proteins in the sorghum genome and further classified them into LEA3A and LEA3B subgroups based on the conservation of LEA3 specific motifs. Further, expression pattern of these genes were analyzed in seeds during development and vegetative tissues under abiotic stresses. SbLEA3A group genes showed expression at early stage of seed development and increased significantly at maturity, while SbLEA3B group genes expressed only in matured seeds. Expression of SbLEA3 genes in response to abiotic stresses such as soil moisture deficit (drought), osmotic, salt, and temperature stresses, and exogenous ABA treatments was also studied in the leaves of 2-weeks-old seedlings. ABA and drought induced the expression of all LEA3 genes, while cold and heat stress induced none of them. Promoter analysis revealed the presence of multiple ABRE core cis-elements and a few low temperature response (LTRE)/drought responsive (DRE) cis-elements. This study suggests non-redundant function of LEA3 genes in seed development and stress tolerance in sorghum.  相似文献   
106.
Abstract

This paper presents the process of designing a new elastic element replacing a membrane in the chamber stapes prosthesis (ChSP). The results of the study are volume displacement characteristics obtained for the prosthesis and physiological stapes. Simulation tests on a 3D CAD model have confirmed that a properly designed ring can stimulate perilymph with the same or greater efficacy as the physiological stapes footplate placed on the elastic annular ligament. The ChSP with a new elastic element creates a good chance of improving hearing in patients suffering from otosclerosis.  相似文献   
107.

Objective

Parathyroid hormone (PTH) and vitamin D are the most important hormones regulating calcium metabolism. In primary hyperparathyroidism (PHPT) excessive amounts of PTH are produced. Bone turnover is enhanced, leading to reduced bone mineral density and elevated levels of serum calcium. The aim of this study was to investigate relations between serum levels of 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D) and bone mineral density, as well as known genetic polymorphisms in the vitamin D receptor and enzymes metabolising vitamin D in patients with PHPT.

Design/Subjects

We conducted a cross-sectional study of 52 patients with PHPT.

Results

Mean level of 25(OH)D was 58.2 nmol/L and median 1,25(OH)2D level was 157 pmol/L. Among our patients with PHPT 36.5% had 25(OH)D levels below 50 nmol/L. Serum 1,25(OH)2D was inversely correlated to bone mineral density in distal radius (p = 0.002), but not to bone mineral density at lumbar spine or femoral neck. The vitamin D receptor polymorphism Apa1 (rs7975232) was associated with bone mineral density in the lumbar spine.

Conclusions

The results suggest that PHPT patients with high blood concentrations of 1,25(OH)2D may have the most deleterious skeletal effects. Randomized, prospective studies are necessary to elucidate whether vitamin D supplementation additionally increases serum 1,25(OH)2D and possibly enhances the adverse effects on the skeleton in patients with PHPT.  相似文献   
108.
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.  相似文献   
109.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   
110.
Cicer anatolicum, a perennial species, has ascochyta blight resistance superior to that found in the cultivated chickpea. However, hybridization barriers during early stages of embryo development curtail access to this trait. Since hormones play an essential role in early embryo development, we have determined the hormone profiles of 4-, 8-, and 12-day old seeds from a Canadian chickpea (Cicer arietinum L.) cv. CDC Xena, from Indian cvs. Swetha and Bharati, and from a perennial accession of C. anatolicum (PI 383626). Indole-3-acetic acid content peaked on day 4 in CDC Xena, on day 8 in both Indian cultivars but only on day 12 in C. anatolicum. The cytokinins, isopentenyladenosine (iPA) and trans zeatin riboside (tZR) were predominant in CDC Xena and Swetha seeds on day 4, whereas cis zeatin riboside was the major component in Bharati. In C. anatolicum, iPA maxed out on day 4 and tZR on day 12. The bioactive gibberellin GA1 spiked on day 4 in CDC Xena and Bharati, on day 8 in Swetha but only on day 12 in C. anatolicum. Eight-day old seeds had the highest abscisic acid content in the cultivars but spiked on day 12 in the perennial species. The hormone profiles of the perennial species showed delayed spikes in all four hormone groups indicating that there is a mismatch in the hormone requirements of the different embryos. Improving synchronization of early seed hormone profiles of cultivated and perennial chickpea should improve interspecific hybrid production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号