首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4750篇
  免费   372篇
  国内免费   1篇
  2023年   23篇
  2022年   57篇
  2021年   119篇
  2020年   51篇
  2019年   73篇
  2018年   96篇
  2017年   85篇
  2016年   147篇
  2015年   260篇
  2014年   243篇
  2013年   328篇
  2012年   417篇
  2011年   395篇
  2010年   247篇
  2009年   194篇
  2008年   306篇
  2007年   298篇
  2006年   263篇
  2005年   257篇
  2004年   242篇
  2003年   218篇
  2002年   237篇
  2001年   42篇
  2000年   34篇
  1999年   47篇
  1998年   52篇
  1997年   45篇
  1996年   19篇
  1995年   35篇
  1994年   31篇
  1993年   34篇
  1992年   25篇
  1991年   14篇
  1990年   16篇
  1989年   19篇
  1988年   12篇
  1987年   7篇
  1986年   9篇
  1985年   15篇
  1984年   10篇
  1983年   7篇
  1982年   17篇
  1981年   10篇
  1980年   7篇
  1979年   6篇
  1978年   5篇
  1976年   10篇
  1973年   4篇
  1972年   4篇
  1969年   5篇
排序方式: 共有5123条查询结果,搜索用时 625 毫秒
991.
Two-dimensional liquid chromatography separation (2-DL), based on chromatofocusing for first dimension and hydrophobicity for second, can be used as a complementary method to two-dimensional gel electrophoresis (2-DE). A platform now available, ProteomeLab PF 2D provided by Beckman Coulter, (Fullerton, CA, USA), assembles these methods in automation. This system was applied to resolve large numbers of urine proteins. Reproducibility and sensitivity in protein resolution were evaluated in this study using urines collected from male blood donors. About 1000 peaks were detected at a pH range of 4.0-8.5 by applying 1 mg of proteins. Furthermore, the same fractions showing peaks with high absorbance intensities in second dimension were collected and subjected to matrix-assisted laser desorption/ionization-time of flight/mass spectrometry analysis for identification. The results showed that the 2-DL provides high reproducibility of two-dimensional protein map, and lends fractions to subsequent mass spectrometry analysis without the further need for extraction or solubilization of samples as required for spots excised from 2-DE gels. In addition, this system also allows to separate particularly proteins with 40-9 kDa molecular weight.  相似文献   
992.
993.
994.
Monogamy is a relatively rare social system in mammals, occurring only in about 3% of mammalian species. Monogamous species are characterized by the formation of pair‐bonds, biparental care, and a very low level of sexual dimorphism. Whereas in most polygynous species males engage in more rough‐and‐tumble play than females, we predicted that males and females of monogamous species would have similar, or monomorphic, play behavior. In this study, we focused on two monogamous species: coppery titi monkeys (Callicebus cupreus) and prairie voles (Microtus ochrogaster). We documented the development of play behavior in both species, and quantified different types of play behavior. We did not find any sex differences in either species in the frequencies and types of play. However, we did find sex differences in the choice of play partner in titi monkeys: female offspring spent a higher proportion of time playing with their father, while male offspring played equally with their mother and father. It is possible that rough‐and‐tumble play behavior is monomorphic in many monogamous mammals, perhaps reflecting differences from polygynous species in the effects of exposure to early androgens or in the estrogen receptor distribution. However, more subtle differences in monomorphic play behavior, such as choice of partner, may still exist.  相似文献   
995.
We have developed an efficient, reproducible, and scaleable cell culture process for a recombinant adenoviral vector expressing therapeutic transgenes for clinical trials. HEK 293 cells – which support the propagation of E1 deficient adenovirus – were first adapted to serum free media and suspension growth. Subsequent studies focused on the infection, virus production and harvest from suspension culture bioreactors. Future studies are planned to address the kinetics of adenovirus production in HEK 293 as well as in other cell lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
996.
The nonstructural protein NS3 of hepatitis C virus (HCV) possesses two enzymatic domains which are thought to be essential for the virus life cycle: an N-terminal serine-type proteinase, responsible for the processing of nonstructural polypeptides, and a C-terminal nucleoside triphosphatase/helicase, presumably involved in the unwinding of the viral genome. The human antibody response to NS3 usually appears early in the course of HCV infection and is predominantly directed against the carboxyl-terminal portion; however, its fine specificity and clinical significance are largely unknown. We have generated a human monoclonal antibody (hMAb), designated CM3.B6, from a cloned B-cell line obtained from the peripheral blood of a patient with chronic HCV infection, which selectively recognized the purified NS3 protein expressed in bacteria or in eukaryotic cells transfected with full-length or NS3 cDNA. Fine-specificity studies revealed that CM3.B6 recognized a 92-amino-acid sequence (clone 8, amino acids 1363 to 1454) selected from an NS3 DNase fragment library but failed to bind to 12-mer peptides synthesized from the same region, suggesting recognition of a conformational B-cell epitope. Experiments using deletion mutants of clone 8 and competitive inhibition studies using a panel of NS3 peptide-specific murine MAbs indicated that limited N-terminal and C-terminal deletions resulted in a significant reduction of hMAb binding to clone 8, thus identifying a minimal antibody binding domain within clone 8. Competition experiments showed that binding of CM3.B6 to the NS3 protein was efficiently inhibited by 39 of 44 (89%) sera from HCV-infected patients, suggesting that the hMAb recognized an immunodominant epitope within the NS3 region. More importantly, recognition of the sequence defined by CM3.B6 appeared to accurately discriminate between viremic and nonviremic anti-HCV positive sera, suggesting potentially relevant clinical applications in the diagnosis and treatment of HCV infection.  相似文献   
997.
The Ebola virus protein VP40 is a transformer protein that possesses an extraordinary ability to accomplish multiple functions by transforming into various oligomeric conformations. The disengagement of the C‐terminal domain (CTD) from the N‐terminal domain (NTD) is a crucial step in the conformational transformations of VP40 from the dimeric form to the hexameric form or octameric ring structure. Here, we use various molecular dynamics (MD) simulations to investigate the dynamics of the VP40 protein and the roles of interdomain interactions that are important for the domain–domain association and dissociation, and report on experimental results of the behavior of mutant variants of VP40. The MD studies find that various salt‐bridge interactions modulate the VP40 domain dynamics by providing conformational specificity through interdomain interactions. The MD simulations reveal a novel salt‐bridge between D45‐K326 when the CTD participates in a latch‐like interaction with the NTD. The D45‐K326 salt‐bridge interaction is proposed to help domain–domain association, whereas the E76‐K291 interaction is important for stabilizing the closed‐form structure. The effects of the removal of important VP40 salt‐bridges on plasma membrane (PM) localization, VP40 oligomerization, and virus like particle (VLP) budding assays were investigated experimentally by live cell imaging using an EGFP‐tagged VP40 system. It is found that the mutations K291E and D45K show enhanced PM localization but D45K significantly reduced VLP formation.  相似文献   
998.
The Uup protein belongs to a subfamily of soluble ATP-binding cassette (ABC) ATPases that have been implicated in several processes different from transmembrane transport of molecules, such as transposon precise excision. We have demonstrated previously that Escherichia coli Uup is able to bind DNA. DNA binding capacity is lowered in a truncated Uup protein lacking its C-terminal domain (CTD), suggesting a contribution of CTD to DNA binding. In the present study, we characterize the role of CTD in the function of Uup, on its overall stability and in DNA binding. To this end, we expressed and purified isolated CTD and we investigated the structural and functional role of this domain. The results underline that CTD is essential for the function of Uup, is stable and able to fold up autonomously. We compared the DNA binding activities of three versions of the protein (Uup, UupΔCTD and CTD) by an electrophoretic mobility shift assay. CTD is able to bind DNA although less efficiently than intact Uup and UupΔCTD. These observations suggest that CTD is an essential domain that contributes directly to the DNA binding ability of Uup.  相似文献   
999.
The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain   总被引:1,自引:0,他引:1  
Highlights? ESCRT-I subunit UBAP1 is essential for degradation of antiviral protein tetherin ? UBAP1 has a domain consisting of a solenoid of overlapping UBAs (SOUBA) ? Each of the three UBAs in the SOUBA binds monoubiquitin  相似文献   
1000.
We investigated the molecular relationships between lipid peroxidation and mitochondrial DNA (mtDNA) single strand breaks (ssb) in isolated rat hepatocytes and mitochondria exposed to tert-butylhydroperoxide (TBH). Our results show that mtDNA ssb induced by TBH are independent of lipid peroxidation and dependent on the presence of iron and of hydroxyl free radicals. These data contribute to the definition of the mechanisms whereby mtDNA ssb are induced and provide possible molecular targets for the prevention of this kind of damage in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号