全文获取类型
收费全文 | 4757篇 |
免费 | 378篇 |
国内免费 | 1篇 |
专业分类
5136篇 |
出版年
2023年 | 25篇 |
2022年 | 64篇 |
2021年 | 119篇 |
2020年 | 51篇 |
2019年 | 73篇 |
2018年 | 96篇 |
2017年 | 85篇 |
2016年 | 147篇 |
2015年 | 260篇 |
2014年 | 243篇 |
2013年 | 328篇 |
2012年 | 418篇 |
2011年 | 395篇 |
2010年 | 247篇 |
2009年 | 194篇 |
2008年 | 306篇 |
2007年 | 298篇 |
2006年 | 263篇 |
2005年 | 257篇 |
2004年 | 242篇 |
2003年 | 218篇 |
2002年 | 237篇 |
2001年 | 42篇 |
2000年 | 34篇 |
1999年 | 47篇 |
1998年 | 52篇 |
1997年 | 45篇 |
1996年 | 19篇 |
1995年 | 36篇 |
1994年 | 31篇 |
1993年 | 35篇 |
1992年 | 26篇 |
1991年 | 14篇 |
1990年 | 18篇 |
1989年 | 19篇 |
1988年 | 10篇 |
1987年 | 6篇 |
1986年 | 9篇 |
1985年 | 15篇 |
1984年 | 10篇 |
1983年 | 7篇 |
1982年 | 18篇 |
1981年 | 10篇 |
1980年 | 7篇 |
1979年 | 6篇 |
1978年 | 5篇 |
1976年 | 10篇 |
1973年 | 4篇 |
1972年 | 4篇 |
1969年 | 5篇 |
排序方式: 共有5136条查询结果,搜索用时 15 毫秒
51.
52.
Aviva Joseph Jian Hua Zheng Ken Chen Monica Dutta Cindy Chen Gabriela Stiegler Renate Kunert Antonia Follenzi Harris Goldstein 《Journal of virology》2010,84(13):6645-6653
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice. 相似文献
53.
Geraldine Monchanin Laura D Serpero Philippe Connes Julien Tripette Dieudonné Wouassi Laurent Bezin Alain Francina Jeanne Ngongang Monica de la Pe?a Raphael Massarelli David Gozal Patrice Thiriet Cyril Martin 《Journal of applied physiology》2007,102(1):169-173
The aim of the study was to examine the effects of exercise on soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1) in sickle cell trait (SCT) athletes with or without alpha-thalassemia. Six athletes with SCT, seven athletes with both SCT and alpha-thalassemia (SCTAT), and seven control athletes (Cont) performed an incremental and maximal test on cycloergometer. Levels of sICAM-1 and sVCAM-1 were assessed at rest, immediately after the end of exercise, and 1, 2, and 24 h after exercise. Although Cont and SCTAT groups exhibited similar basal plasma levels of inflammatory and adhesion molecules, the SCT group had higher sVCAM-1 basal concentrations. Incremental exercise resulted in a significant increase of sVCAM-1 in all subjects, which remained elevated only in the SCT group during the recovery period. In conclusion, as sVCAM-1 increased with exercise and during the recovery period, our findings support the concept that SCT athletes might be at risk for microcirculatory disturbances and adhesive phenomena developing at rest and several hours after exercise. alpha-Thalassemia might be considered protective among exercising SCT subjects. 相似文献
54.
Novel Rumen Bacterial Diversity in Two Geographically Separated Sub-Species of Reindeer 总被引:2,自引:0,他引:2
Svalbard reindeer (Rangifer tarandus platyrhynchus) live under austere nutritional conditions on the high-arctic archipelago of Svalbard, while semi-domesticated Norwegian
reindeer (R. tarandus tarandus) migrate between lush coastal summer pastures and inland winter pastures with lichens on mainland Norway. Svalbard reindeer
are known to have high rumen concentrations of cellulolytic bacteria, ranging from 15% of the viable population in summer
to 35% in winter, compared to only 2.5% in Norwegian reindeer. Their rumen bacterial diversity was investigated through comparative
analyses of 16S rRNA gene sequences (∼1.5 kb in length) generated from clone libraries (n = 121) and bacterial isolates (n = 51). LIBSHUFF comparisons of the composition of the two 16S rRNA libraries from Norwegian reindeer showed a significant
effect of artificial feeding compared to natural pasture, but failed to yield significant differences between libraries from
Norwegian reindeer and Svalbard reindeer. The combined sequences from reindeer were not significantly different from those
reported in wild Thompson’s gazelle in Kenya but did differ from those reported in domestic cattle in Japan. A total of 90
distinct operational taxonomic units (OTUs) were identified by employing a criterion of 97% similarity, while the Chao1 index
estimated the reindeer bacterial rumen population richness at 698 OTUs. The majority of the clone library sequences (92.5%)
represented novel strains with <97% identity to any known sequence in the public database, most of them affiliated with the
bacterial phylum Firmicutes (low G+C Gram-positives) related to the order Clostridiales (76.7%), while Gram-negative bacteria in the Bacteriodales (Prevotella–Bacteroides group) contributed to 22.5%. Also, six of the isolates were putatively novel strains, possibly representing new species in
the Clostridium subphylum (cluster XIVa), Actinomyces and Butyrivibrio. 相似文献
55.
Isabella Russo Monica Traversa Katia Bonomo Alessandro De Salve Luigi Mattiello Paola Del Mese Gabriella Doronzo Franco Cavalot Mariella Trovati Giovanni Anfossi 《Obesity (Silver Spring, Md.)》2010,18(4):788-797
Central obesity shows impaired platelet responses to the antiaggregating effects of nitric oxide (NO), prostacyclin, and their effectors—guanosine 3′,5′‐cyclic monophosphate (cGMP) and adenosine 3′,5′‐cyclic monophosphate (cAMP). The influence of weight loss on these alterations is not known. To evaluate whether a diet‐induced body‐weight reduction restores platelet sensitivity to the physiological antiaggregating agents and reduces platelet activation in subjects affected by central obesity, we studied 20 centrally obese subjects before and after a 6‐month diet intervention aiming at reducing body weight by 10%, by measuring (i) insulin sensitivity (homeostasis model assessment of insulin resistance (HOMAIR)); (ii) plasma lipids; (iii) circulating markers of inflammation of adipose tissue and endothelial dysfunction, and of platelet activation (i.e., soluble CD‐40 ligand (sCD‐40L) and soluble P‐selectin (sP‐selectin)); (iv) ability of the NO donor sodium nitroprusside (SNP), the prostacyclin analog Iloprost and the cyclic nucleotide analogs 8‐bromoguanosine 3′,5′‐cyclic monophosphate (8‐Br‐cGMP) and 8‐bromoadenosine 3′,5′‐cyclic monophosphate (8‐Br‐cAMP) to reduce platelet aggregation in response to adenosine‐5‐diphosphate (ADP); and (v) ability of SNP and Iloprost to increase cGMP and cAMP. The 10 subjects who reached the body‐weight target showed significant reductions of insulin resistance, adipose tissue, endothelial dysfunction, and platelet activation, and a significant increase of the ability of SNP, Iloprost, 8‐Br‐cGMP, and 8‐Br‐cAMP to reduce ADP‐induced platelet aggregation and of the ability of SNP and Iloprost to increase cyclic nucleotide concentrations. No change was observed in the 10 subjects who did not reach the body‐weight target. Changes of platelet function correlated with changes of HOMAIR. Thus, in central obesity, diet‐induced weight loss reduces platelet activation and restores the sensitivity to the physiological antiaggregating agents, with a correlation with improvements in insulin sensitivity. 相似文献
56.
Monica R. Canelhas Anne C. Barbosa Adriana O. Medeiros Ching-Fu Lee Li-Yin Huang Marc-André Lachance Carlos A. Rosa 《Antonie van Leeuwenhoek》2011,99(2):241-247
Two novel ascomycetous yeast species, Saturnispora serradocipensis and Saturnispora gosingensis, were isolated from leaf detritus in a tropical stream of Southeastern Brazil and a mushroom collected in Taiwan, respectively.
Analysis of the D1/D2 domains of the large-subunit of the rRNA gene of these strains showed that these species are related
to Saturnispora hagleri, their closest relative. Saturnispora serradocipensis and S. gosingensis differed from S. hagleri, respectively, by seven nucleotide substitutions and two indels and three nucleotide substitutions and three indels in D1/D2
rRNA sequences. The two new species differ from each another by four nucleotide substitutions and one indel in D1/D2 rRNA
sequences. However, the ITS sequences of S. serradocipensis, S. gosingensis and S. hagleri were quite divergent, showing that they are genetically separate species. The type strain of S. serradocipensis is UFMG-DC-198T (=CBS 11756T = NRRL Y-48717T), and of S. gosingensis GA4M05T is (CBS 11755T = NRRL Y-48718T). 相似文献
57.
Pombero A Bueno C Saglietti L Rodenas M Guimera J Bulfone A Martinez S 《Development (Cambridge, England)》2011,138(19):4315-4326
The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain. 相似文献
58.
Sapone A Gustavino B Monfrinotti M Canistro D Broccoli M Pozzetti L Affatato A Valgimigli L Forti GC Pedulli GF Biagi GL Abdel-Rahman SZ Paolini M 《Mutation research》2007,626(1-2):143-154
Epidemiological evidence suggests a link between consumption of chlorinated drinking water and various cancers. Chlorination of water rich in organic chemicals produces carcinogenic organochlorine by-products (OBPs) such as trihalomethanes and haloacetic acids. Since the discovery of the first OBP in the 1970s, there have been several investigations designed to determine the biological effects of single chemicals or small artificial OBP combinations. However, there is still insufficient information regarding the general biological response to these compounds, and further studies are still needed to evaluate their potential genotoxic effects. In the current study, we evaluated the effect of three drinking water disinfectants on the activity of cytochrome P450 (CYP)-linked metabolizing enzymes and on the generation of oxidative stress in the livers of male and female Cyprinus carpio fish (carp). The fish were exposed in situ for up 20 days to surface water obtained from the Trasmene lake in Italy. The water was treated with 1-2 mg/L of either sodium hypochlorite (NaClO) or chlorine dioxide (ClO2) as traditional disinfectants or with a relatively new disinfectant product, peracetic acid (PAA). Micronucleus (MN) frequencies in circulating erythrocytes from the fish were also analysed as a biomarker of genotoxic effect. In the CYP-linked enzyme assays, a significant induction (up to a 57-fold increase in the deethylation of ethoxyresorufin with PAA treatment) and a notable inactivation (up to almost a 90% loss in hydroxylation of p-nitrophenol with all disinfectants, and of testosterone 2beta-hydroxylation with NaClO) was observed in subcellular liver preparations from exposed fish. Using the electron paramagnetic resonance (EPR) spectroscopy radical-probe technique, we also observed that CYP-modulation was associated with the production of reactive oxygen species (ROS). In addition, we found a significant increase in MN frequency in circulating erythrocytes after 10 days of exposure of fish to water treated with ClO2, while a non-significant six-fold increase in MN frequency was observed with NaClO, but not with PAA. Our data suggest that the use of ClO2 and NaClO to disinfect drinking water could generate harmful OBP mixtures that are able to perturb CYP-mediated reactions, generate oxidative stress and induce genetic damage. These data may provide a mechanistic explanation for epidemiological studies linking consumption of chlorinated drinking water to increased risk of urinary, gastrointestinal and bladder cancers. 相似文献
59.
Background
α-defensin-5 (HD5) is a key effector of the innate immune system with broad anti-bacterial and anti-viral activities. Specialized epithelial cells secrete HD5 in the genital and gastrointestinal mucosae, two anatomical sites that are critically involved in HIV-1 transmission and pathogenesis. We previously found that human neutrophil defensins (HNP)-1 and -2 inhibit HIV-1 entry by specific bilateral interaction both with the viral envelope and with its primary cellular receptor, CD4. Despite low amino acid identity, human defensin-5 (HD5) shares with HNPs a high degree of structural homology.Methodology/Principal Findings
Here, we demonstrate that HD5 inhibits HIV-1 infection of primary CD4+ T lymphocytes at low micromolar concentration under serum-free and low-ionic-strength conditions similar to those occurring in mucosal fluids. Blockade of HIV-1 infection was observed with both primary and laboratory-adapted strains and was independent of the viral coreceptor-usage phenotype. Similar to HNPs, HD5 inhibits HIV-1 entry into the target cell by interfering with the reciprocal interaction between the external envelope glycoprotein, gp120, and CD4. At high concentrations, HD5 was also found to downmodulate expression of the CXCR4 coreceptor, but not of CCR5. Consistent with its broad spectrum of activity, antibody competition studies showed that HD5 binds to a region overlapping with the CD4- and coreceptor-binding sites of gp120, but not to the V3 loop region, which contains the major determinants of coreceptor-usage specificity.Conclusion/Significance
These findings provide new insights into the first line of immune defense against HIV-1 at the mucosal level and open new perspectives for the development of preventive and therapeutic strategies. 相似文献60.
Clostridium perfringens phospholipase C (Cp-PLC), the major virulence factor in the pathogenesis of gas gangrene, is a Zn(2+) metalloenzyme with lecithinase and sphingomyelinase activities. Its structure shows an N-terminal domain containing the active site, and a C-terminal Ca(2+) binding domain required for membrane interaction. Although the knowledge of the structure of Cp-PLC and its interaction with aggregated phospholipids has advanced significantly, an understanding of the effects of Cp-PLC in mammalian cells is still incomplete. Cp-PLC binds to artificial bilayers containing cholesterol and sphingomyelin or phosphatidylcholine (PC) and degrades them, but glycoconjugates present in biological membranes influence its binding or positioning toward its substrates. Studies with Cp-PLC variants harboring single amino-acid substitutions have revealed that the active site, the Ca(2+) binding region, and the membrane interacting surface are required for cytotoxic and haemolytic activity. Cp-PLC causes plasma membrane disruption at high concentrations, whereas at low concentrations it perturbs phospholipid metabolism, induces DAG generation, PKC activation, Ca(2+) mobilization, and activates arachidonic acid metabolism. The cellular susceptibility to Cp-PLC depends on the composition of the plasma membrane and the capacity to up-regulate PC synthesis. The composition of the plasma membrane determines whether Cp-PLC can bind and acquire its active conformation, and thus the extent of phospholipid degradation. The capacity of PC synthesis and the availability of precursors determine whether the cell can replace the degraded phospholipids. Whether the perturbations of signal transduction processes caused by Cp-PLC play a role in cytotoxicity is not clear. However, these perturbations in endothelial cells, platelets and neutrophils lead to the uncontrolled production of intercellular mediators and adhesion molecules, which inhibits bacterial clearance and induces thrombotic events, thus favouring bacterial growth and spread in the host tissues. 相似文献