首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4752篇
  免费   374篇
  国内免费   1篇
  5127篇
  2023年   25篇
  2022年   64篇
  2021年   119篇
  2020年   51篇
  2019年   73篇
  2018年   96篇
  2017年   85篇
  2016年   147篇
  2015年   260篇
  2014年   243篇
  2013年   328篇
  2012年   417篇
  2011年   395篇
  2010年   247篇
  2009年   194篇
  2008年   306篇
  2007年   298篇
  2006年   263篇
  2005年   257篇
  2004年   242篇
  2003年   218篇
  2002年   237篇
  2001年   42篇
  2000年   34篇
  1999年   47篇
  1998年   52篇
  1997年   45篇
  1996年   19篇
  1995年   35篇
  1994年   31篇
  1993年   34篇
  1992年   25篇
  1991年   14篇
  1990年   16篇
  1989年   18篇
  1988年   10篇
  1987年   6篇
  1986年   8篇
  1985年   15篇
  1984年   10篇
  1983年   7篇
  1982年   17篇
  1981年   10篇
  1980年   7篇
  1979年   6篇
  1978年   5篇
  1976年   10篇
  1973年   4篇
  1972年   4篇
  1969年   5篇
排序方式: 共有5127条查询结果,搜索用时 15 毫秒
81.
An intracellular esterase from the yeast Kluyveromyces marxianus CBS 1553 with interesting enantioselective hydrolytic activity towards racemic esters of 1,2-O-isopropylidene glycerol (IPG) was purified and characterized. Optimal culture conditions for the obtainment of the enantioselective esterase on a 5 l-fermentation scale were investigated. Two esterase activities (EST1 and EST2) in the crude cell extract were identified by native PAGE with specific activity staining and separated from each other by anion-exchange chromatography. EST1 showed higher activity and enantioselectivity than EST2 in the resolution of racemic IPG acetate and was further purified by hydrophobic interaction chromatography and preparative electrophoresis (final specific activity approximately = 300 U mg(-1), showing a main protein band with a molecular mass of 29 kDa. EST1 showed optimal activity between pH 8.0 and 10.0 and was stable in the pH range 7.0-10.0. Moreover, it was rather thermostable and active up to 80 degrees C, and retained most of its activity in the presence of 15% (v/v) of various organic solvents. The enzyme showed similar Vmax in the hydrolysis of the acetate esters of IPG, whereas the Km value towards (S)-IPG acetate was significantly lower than the one towards the (R)-enantiomer (5.3 and 70 microM, respectively). Finally, comparison of EST1 activity in the presence of different glycerol esters and synthetic substrates with different chain lengths showed a strong preference of this biocatalyst for short-chain substrates.  相似文献   
82.
83.
Baculovirus can transiently transduce primary human and rat hepatocytes, as well as a subset of stable cell lines. To prolong transgene expression, we have developed new hybrid vectors which associate key elements from adeno-associated virus (AAV) with the elevated transducing capacity of baculovirus. The hybrid vectors contain a transgene cassette composed of the β-galactosidase (β-Gal) reporter gene and the hygromycin resistance (Hygr) gene flanked by the AAV inverted terminal repeats (ITRs), which are necessary for AAV replication and integration in the host genome. Constructs were derived both with and without the AAV rep gene under the p5 and p19 promoters cloned in different positions with respect to the baculovirus polyheidrin promoter. A high-titer preparation of baculovirus-AAV (Bac-AAV) chimeric virus containing the ITR–Hygr–β-Gal sequence was obtained with insect cells only when the rep gene was placed in an antisense orientation to the polyheidrin promoter. Infection of 293 cells with Bac-AAV virus expressing the rep gene results in a 10- to 50-fold increase in the number of Hygr stable cell clones. Additionally, rep expression determined the localization of the transgene cassette in the aavs1 site in approximately 41% of cases as detected by both Southern blotting and fluorescent in situ hybridization analysis. Moreover, site-specific integration of the ITR-flanked DNA was also detected by PCR amplification of the ITR-aavs1 junction in transduced human fibroblasts. These data indicate that Bac-AAV hybrid vectors can allow permanent, nontoxic gene delivery of DNA constructs for ex vivo treatment of primary human cells.  相似文献   
84.
Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.  相似文献   
85.
86.
87.
The effect of hypothyroidism on citrate carrier (CiC) activity has been investigated in rat-liver mitochondria. The rate of citrate transport was reduced by approximately 50% in mitochondria from hypothyroid as compared with euthyroid rats. In parallel, a decrease in the rate of de novo fatty acid synthesis was observed in the cytosol of the former animals. Kinetic analysis of citrate transport revealed that only the Vmax was reduced by hypothyroidism, while Km was almost unaffected. Hypothyroidism increased the mitochondrial percentage of phosphatidylcholine while decreased that of phosphatidylethanolamine; an altered fatty acid pattern but no significant difference in the sum of saturated and unsaturated fatty acids as well as in the unsaturation index was observed. The CiC Arrhenius plot did not show appreciable difference between the two groups of rats. However, Western blot analysis associated with mRNA quantitation indicated that both protein level and mRNA accumulation of hepatic CiC were noticeably decreased in hypothyroid state. Therefore, a reduced content of the carrier protein can represent a plausible mechanism to explain the decline in the CiC activity observed in rat liver mitochondria of hypothyroid rats.  相似文献   
88.
The presence of sulfated glycosaminoglycans (GAGs) was demonstrated in the connective tissue of bovine and cod skeletal muscle by histochemical staining using Alcian blue added MgCl2 (0.06 M and 0.4 M, respectively). For further identification of the sulfated GAGs, a panel of monoclonal antibodies, 1B5, 2B6, 3B3 and 5D4 was used that recognizes epitopes in chondroitin-0-sulfate (C0S), chondroitin-4-sulfate/dermatan sulfate (C4S/DS), chondroitin-6-sulfate (C6S) and keratan sulfate (KS), respectively. Light microscopy and Western blotting techniques showed that in bovine and cod muscle C0S and C6S were primarily localized pericellularly, whereas cod exhibited a more intermittent staining. C4S was expressed around the separate cells and also in the perimysium and myocommata. In contrast to bovine muscle, which hardly expressed highly sulfated KS, cod exhibited a very strong and consistent staining. Western blotting showed that C0S and C6S were mainly associated with proteoglycans (PGs) of high molecular sizes in both species. Contrary to bovine muscle, C4S in cod was associated with molecules of various sizes. Both cod and bovine muscle contained KSPGs of similar sizes as C4S. KSPGs of different sizes and buoyant densities, sensitive to keratanase I and II were found expressed in cod.  相似文献   
89.
After more than 15 years of experimentation, DNA vaccines have become a promising perspective for tumour diseases, and animal models are widely used to study the biological features of human cancer progression and to test the efficacy of vaccination protocols. In recent years, immunisation with naked plasmid DNA encoding tumour-associated antigens or tumour-specific antigens has revealed a number of advantages: antigen-specific DNA vaccination stimulates both cellular and humoral immune responses; multiple or multi-gene vectors encoding several antigens/determinants and immune-modulatory molecules can be delivered as single administration; DNA vaccination does not induce autoimmune disease in normal animals; DNA vaccines based on plasmid vectors can be produced and tested rapidly and economically. However, DNA vaccines have shown low immunogenicity when tested in human clinical trials, and compared with traditional vaccines, they induce weak immune responses. Therefore, the improvement of vaccine efficacy has become a critical goal in the development of effective DNA vaccination protocols for anti-tumour therapy. Several strategies are taken into account for improving the DNA vaccination efficacy, such as antigen optimisation, use of adjuvants and delivery systems like electroporation, co-expression of cytokines and co-stimulatory molecules in the same vector, different vaccination protocols. In this review we discuss how the combination of these approaches may contribute to the development of more effective DNA vaccination protocols for the therapy of lymphoma in a mouse model.  相似文献   
90.
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号