首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4840篇
  免费   382篇
  国内免费   1篇
  5223篇
  2023年   25篇
  2022年   64篇
  2021年   119篇
  2020年   51篇
  2019年   73篇
  2018年   97篇
  2017年   88篇
  2016年   150篇
  2015年   260篇
  2014年   249篇
  2013年   333篇
  2012年   420篇
  2011年   400篇
  2010年   251篇
  2009年   196篇
  2008年   311篇
  2007年   303篇
  2006年   268篇
  2005年   259篇
  2004年   243篇
  2003年   221篇
  2002年   240篇
  2001年   43篇
  2000年   35篇
  1999年   50篇
  1998年   52篇
  1997年   45篇
  1996年   19篇
  1995年   35篇
  1994年   31篇
  1993年   37篇
  1992年   27篇
  1991年   14篇
  1990年   16篇
  1989年   18篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   19篇
  1984年   11篇
  1983年   9篇
  1982年   18篇
  1981年   10篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1976年   10篇
  1975年   6篇
  1972年   5篇
  1969年   6篇
排序方式: 共有5223条查询结果,搜索用时 15 毫秒
41.
Entry into mitosis requires the activation of cdk1/cyclin B, while mitotic exit is achieved when the same kinase activity decreases, as cyclin B is degraded. Cyclin B proteolysis is mediated by the anaphase promoting complex, or APC, an E3 ligase that is active at anaphase in mitosis through G1. We have identified a G1 substrate of the APC that we have termed Tome-1, for trigger of mitotic entry. Tome-1 is a cytosolic protein required for proper activation of cdk1/cyclin B and mitotic entry. Tome-1 associates with Skp-1 and is required for degradation of the cdk1 inhibitory tyrosine kinase wee1; Tome-1 therefore appears to be acting as part of an SCF-type E3 for wee1. Degradation of Tome-1 during G1 allows for wee 1 accumulation during interphase, thereby providing a critical link between the APC and SCF pathways in regulation of cdk1/cyclin B activity and thus mitotic entry and exit.  相似文献   
42.
Intrauterine infection/inflammation (IUI) is a major contributor to preterm labor (PTL). However, IUI does not invariably cause PTL. We hypothesized that quantitative and qualitative differences in immune response exist in subjects with or without PTL. To define the triggers for PTL, we developed rhesus macaque models of IUI driven by lipopolysaccharide (LPS) or live Escherichia coli. PTL did not occur in LPS challenged rhesus macaques, while E. coli–infected animals frequently delivered preterm. Although LPS and live E. coli both caused immune cell infiltration, E. coli–infected animals showed higher levels of inflammatory mediators, particularly interleukin 6 (IL-6) and prostaglandins, in the chorioamnion-decidua and amniotic fluid (AF). Neutrophil infiltration in the chorio-decidua was a common feature to both LPS and E. coli. However, neutrophilic infiltration and IL6 and PTGS2 expression in the amnion was specifically induced by live E. coli. RNA sequencing (RNA-seq) analysis of fetal membranes revealed that specific pathways involved in augmentation of inflammation including type I interferon (IFN) response, chemotaxis, sumoylation, and iron homeostasis were up-regulated in the E. coli group compared to the LPS group. Our data suggest that the intensity of the host immune response to IUI may determine susceptibility to PTL.  相似文献   
43.
The Uup protein belongs to a subfamily of soluble ATP-binding cassette (ABC) ATPases that have been implicated in several processes different from transmembrane transport of molecules, such as transposon precise excision. We have demonstrated previously that Escherichia coli Uup is able to bind DNA. DNA binding capacity is lowered in a truncated Uup protein lacking its C-terminal domain (CTD), suggesting a contribution of CTD to DNA binding. In the present study, we characterize the role of CTD in the function of Uup, on its overall stability and in DNA binding. To this end, we expressed and purified isolated CTD and we investigated the structural and functional role of this domain. The results underline that CTD is essential for the function of Uup, is stable and able to fold up autonomously. We compared the DNA binding activities of three versions of the protein (Uup, UupΔCTD and CTD) by an electrophoretic mobility shift assay. CTD is able to bind DNA although less efficiently than intact Uup and UupΔCTD. These observations suggest that CTD is an essential domain that contributes directly to the DNA binding ability of Uup.  相似文献   
44.
45.
Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration.  相似文献   
46.
The aim of the study was to examine the effects of exercise on soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1) in sickle cell trait (SCT) athletes with or without alpha-thalassemia. Six athletes with SCT, seven athletes with both SCT and alpha-thalassemia (SCTAT), and seven control athletes (Cont) performed an incremental and maximal test on cycloergometer. Levels of sICAM-1 and sVCAM-1 were assessed at rest, immediately after the end of exercise, and 1, 2, and 24 h after exercise. Although Cont and SCTAT groups exhibited similar basal plasma levels of inflammatory and adhesion molecules, the SCT group had higher sVCAM-1 basal concentrations. Incremental exercise resulted in a significant increase of sVCAM-1 in all subjects, which remained elevated only in the SCT group during the recovery period. In conclusion, as sVCAM-1 increased with exercise and during the recovery period, our findings support the concept that SCT athletes might be at risk for microcirculatory disturbances and adhesive phenomena developing at rest and several hours after exercise. alpha-Thalassemia might be considered protective among exercising SCT subjects.  相似文献   
47.
48.
49.
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice.  相似文献   
50.
Central obesity shows impaired platelet responses to the antiaggregating effects of nitric oxide (NO), prostacyclin, and their effectors—guanosine 3′,5′‐cyclic monophosphate (cGMP) and adenosine 3′,5′‐cyclic monophosphate (cAMP). The influence of weight loss on these alterations is not known. To evaluate whether a diet‐induced body‐weight reduction restores platelet sensitivity to the physiological antiaggregating agents and reduces platelet activation in subjects affected by central obesity, we studied 20 centrally obese subjects before and after a 6‐month diet intervention aiming at reducing body weight by 10%, by measuring (i) insulin sensitivity (homeostasis model assessment of insulin resistance (HOMAIR)); (ii) plasma lipids; (iii) circulating markers of inflammation of adipose tissue and endothelial dysfunction, and of platelet activation (i.e., soluble CD‐40 ligand (sCD‐40L) and soluble P‐selectin (sP‐selectin)); (iv) ability of the NO donor sodium nitroprusside (SNP), the prostacyclin analog Iloprost and the cyclic nucleotide analogs 8‐bromoguanosine 3′,5′‐cyclic monophosphate (8‐Br‐cGMP) and 8‐bromoadenosine 3′,5′‐cyclic monophosphate (8‐Br‐cAMP) to reduce platelet aggregation in response to adenosine‐5‐diphosphate (ADP); and (v) ability of SNP and Iloprost to increase cGMP and cAMP. The 10 subjects who reached the body‐weight target showed significant reductions of insulin resistance, adipose tissue, endothelial dysfunction, and platelet activation, and a significant increase of the ability of SNP, Iloprost, 8‐Br‐cGMP, and 8‐Br‐cAMP to reduce ADP‐induced platelet aggregation and of the ability of SNP and Iloprost to increase cyclic nucleotide concentrations. No change was observed in the 10 subjects who did not reach the body‐weight target. Changes of platelet function correlated with changes of HOMAIR. Thus, in central obesity, diet‐induced weight loss reduces platelet activation and restores the sensitivity to the physiological antiaggregating agents, with a correlation with improvements in insulin sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号