首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   10篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   11篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有119条查询结果,搜索用时 31 毫秒
81.
82.
Eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzaldehyde) is a toxin produced by Eutypa lata, the causal agent of eutypa dieback in the grapevine (Vitis vinifera). Eutypine is enzymatically converted by numerous plant tissues into eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), a metabolite that is nontoxic to grapevine. We report a four-step procedure for the purification to apparent electrophoretic homogeneity of a eutypine-reducing enzyme (ERE) from etiolated mung bean (Vigna radiata) hypocotyls. The purified protein is a monomer of 36 kD, uses NADPH as a cofactor, and exhibits a Km value of 6.3 μm for eutypine and a high affinity for 3- and 4-nitro-benzaldehyde. The enzyme failed to catalyze the reverse reaction using eutypinol as a substrate. ERE detoxifies eutypine efficiently over a pH range from 6.2 to 7.5. These data strongly suggest that ERE is an aldehyde reductase that could probably be classified into the aldo-keto reductase superfamily. We discuss the possible role of this enzyme in eutypine detoxification.Many pathogenic bacteria and fungi produce toxins that interfere with various functions of plant cells and may affect plant defense mechanisms (Durbin, 1981). Toxin production is commonly associated with disease severity and can be involved in colonization or systemic invasion by the pathogen (Schäfer, 1994). Toxin resistance has been shown in most cases to be based on the ability of the plant to metabolically detoxify pathogen toxins (Meeley and Walton, 1991; Zhang and Birch, 1997; Zweimuller et al., 1997). Few cloned toxin-resistance genes that encode proteins involved in detoxification mechanisms have been described (Utsumi et al., 1988; Johal and Briggs, 1992; Zhang and Birch, 1997). In many cases a relationship exists between toxin tolerance and resistance to the disease (Anzai et al., 1989; Meeley et al., 1992). The availability of toxin-resistance genes will permit a greater understanding of the mechanisms causing plant disease and will also set the stage for engineering resistance to plant disease (Keen, 1993).Eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzaldehyde) is a toxin produced by the ascomycete fungus Eutypa lata (Pers.: Fr.) Tul., the causal agent of eutypa dieback (Tey-Rulh et al., 1991). This disease is responsible for considerable loss in yield and is the most devastating disease of grapevine (Vitis vinifera) in many countries (Moller and Kasamitis, 1981; Munkvold et al., 1994). The fungus infects the stock through pruning wounds and is present in the xylem and phloem of the vine trunk and branches (Moller and Kasamitis, 1978; Duthie et al., 1991). After a long incubation period, a canker forms around the infected wound. The toxin synthesized by the fungus in the trunk is believed to be transported by the sap to the herbaceous parts of the vine (Fallot et al., 1997). Eutypine penetrates grapevine cells through passive diffusion and its accumulation in the cytoplasm has been explained by an ion-trapping mechanism related to the ionization state of the molecule (Deswarte et al., 1996b). In the cell the effects of eutypine include reduction of adenylated nucleotide content, inhibition of succinate dehydrogenase, uncoupling of oxidative phosphorylation, and mitochondrial swelling (Deswarte et al., 1996a).Symptoms of eutypa dieback in the herbaceous part of the plant lead to dwarfed and withered new growth of branches, marginal necrosis of the leaves, dryness of the inflorescence, and, finally, death of one or more branches (Moller and Kasamitis, 1981). The toxin appears to be an important virulence factor involved in symptom development of the disease (Deswarte et al., 1996a). However, the absence of toxin-deficient mutants of the fungus and its long incubation period in the trunk before symptom development have prevented a critical study of the toxin in vine plants. Determining the gene responsible for eutypine resistance would therefore be an important critical tool in determining the role of eutypine toxin in symptom development in the disease; and it has the potential to confer resistance to transgenic grapevines.Recently, Colrat et al. (1998) found detoxification to occur in grapevine cells through the enzymatic reduction of eutypine into its corresponding alcohol, eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol). We have determined that this derivative of the toxin is nontoxic for grapevine tissues. Furthermore, we have established a relationship between the susceptibility of grapevine to eutypa dieback and the ability of tissues to inactivate eutypine, suggesting that the detoxification mechanism plays an important role in defense reactions. Eutypine is enzymatically detoxified in numerous plant species and, among them, we found that the tissues of mung bean (Vigna radiata), a nonhost plant for the pathogen, exhibit an efficient detoxification activity. As a prerequisite for demonstrating the involvement of eutypine toxin in eutypa dieback, we report here the purification to homogeneity and the characterization of an ERE from etiolated mung bean hypocotyls.  相似文献   
83.
Effects of appling exogenous jasmonic acid (JA) on the germination of Dioscorea alata L. microtubers were examined on Murashige and Skoog (MS) medium. Microtuber germination was promoted by JA (0.1 and 1 M) supplemented to the culture medium but higher concentrations (30 and 100 M) completely inhibited germination. When these inhibited microtubers were transferred to hormone-free medium, germination resumed.After transfer to greenhouse conditions, almost all plants (95%) from tubers previously cultivated on MS medium with 100 M JA survived and all acclimatized plants had produced tubers after 8 months. It is concluded that depending on JA concentration, both the germination and dormancy processes in D. alata microtubers were affected. The release from dormancy is easily obtained by transferring dormant microtubers to hormone-free medium.  相似文献   
84.
We report the isolation by differential display of a novel tomato ethylene-responsive cDNA, designated ER5. RT-PCR analysis of ER5 expression revealed an early (15 min) and transient induction by ethylene in tomato fruit, leaves and roots. ER5 mRNA accumulated during 2 h of ethylene treatment and thereafter underwent a dramatic decline leading to undetectable expression after 5 h of treatment. The full-length cDNA clone of 748 bp was obtained and DNA sequence analysis showed strong homologies to members of the atypical hydrophobic group of the LEA protein family. The predicted amino acid sequence shows 67%, 64%, 64%, and 61% sequence identity with the tomato Lemmi9, soybean D95-4, cotton Lea14-A, and resurrection plant pcC27-45 gene products, respectively. As with the other members of this group, ER5 encodes a predominantly hydrophobic protein. Prolonged drought stress stimulates ER5 expression in leaves and roots, while ABA induction of this ethylene-responsive clone is confined to the leaves. The use of 1-MCP, an inhibitor of ethylene action, indicates that the drought induction of ER5 is ethylene-mediated in tomato roots. Finally, wounding stimulates ER5 mRNA accumulation in leaves and roots. Among the Lea gene family this novel clone is the first to display an ethylene-regulated expression.  相似文献   
85.
1-aminocyclopropane-1-carboxylate (ACC) oxidase, which catalyses the terminal step in ethylene biosynthesis, is encoded by a small multigene family in tomato that is differentially expressed in response to developmental and environmental cues. In this study we report the isolation and sequencing of approximately 2 kb of 5′-flanking sequence of three tomato ACC oxidase genes (LEACO1, LEACO2, LEACO3) and the occurrence of class I and class II mobile element-like insertions in promoter and intron regions of two of them. The LEACO1 upstream region contains a 420-bp direct repeat which is present in multiple copies in the tomato genome and is very similar to sequences in the promoters of the tomato E4 and 2A11 genes. The region covering the repeats resembles the remnant of a retrotransposon. Two copies of a small transposable element, belonging to the Stowaway inverted repeat element family, have been found in the 5′-flanking sequence and the third intron of LEACO3. Received: 8 August 1996 / Accepted: 4 November 1996  相似文献   
86.
87.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   
88.
Scorpion envenoming is less studied in pregnant victims. In this work, the effect of Buthus occitanus tunetanus on parturition in late pregnancy was studied in an animal model. Four groups of six primigravid female rats, each one at the 22nd day of pregnancy, were used. The first two groups had received an intra-peritoneal injection of 500 microg/kg of Buthus occitanus tunetanus crude venom or a physiological saline solution and left until foetal delivery. Then, the time elapsed until the first pup delivery and that separating the first and latest ones were measured. The other two groups served for the uterine electrophysiological activity exploration. Rats were anaesthetized, artificially ventilated and had received an intraperitoneal injection of 500 microg/kg of Buthus occitanus tunetanus crude venom or a physiological saline solution. Our results showed a significant increase of the latency to foetal delivery, labour time, and uterine contractile activity in envenomed rats compared to controls. Such signs are usually seen in dynamic dystocia. It was concluded that Buthus occitanus tunetanus envenoming might induce a dynamic dystocia, when it occurred in late pregnancy.  相似文献   
89.
Non-freezing low temperature storage causes injury to melons and most other fruit and vegetables of tropical and subtropical origin. We demonstrate here that ethylene suppression through an antisense ACC oxidase (ACO) gene considerably reduced the sensitivity of Charentais cantaloupe melons to chilling injury. In contrast to wild-type fruit, antisense ACO melons did not develop the characteristic chilling injury of pitting and browning of the rind neither when stored at low temperature (3 weeks at 2 °C) nor upon rewarming. Treating antisense melons with 10 p.p.m. ethylene for more than 1 d prior to cold storage resulted in the restoration of chilling sensitivity. When the ethylene treatment was performed after cold storage, the chilling injury symptoms did not appear. The tolerance to chilling was associated with a lower accumulation of ethanol and acetaldehyde, reduced membrane deterioration and higher capacity of the fruit to remove active oxygen species. The activities of catalase, superoxide dismutase and peroxidase were markedly increased in antisense ACO fruit in comparison with wild-type fruit, particulary upon rewarming and post-storage ethylene treatment. Severe chilling injury symptoms were correlated with a lower activity of activated oxygen scavenging enzymes. These results demonstrate that ethylene acts in conjunction with low temperature to induce metabolic shifts that participate in the development of chilling injury.  相似文献   
90.
Passe Crassane梨果实采后需经过 6 0~ 80d的低温处理才能正常后熟。为了明确低温促进果实成熟的机理 ,对果实进行了低温和低温结合 1 MCP(1 甲基环丙烯 ,乙烯作用抑制剂 )和丙烯 (乙烯类似物 )处理。研究发现 :果实经低温处理后 ,乙烯合成前体———ACC含量大幅度升高 ,而未经低温处理的果实 ,无论贮藏在空气中或用丙烯 1 0 0 0μl/L处理 ,果实中ACC、M ACC含量均保持较低水平。但冷藏前用 1 MCP处理可抑制冷藏果实或冷藏后升温的果实ACC含量的增高。这说明果实的后熟过程与低温和依赖乙烯的ACC合成酶的活性和基因的表达密切相关。未经冷藏的果实于 2 0℃下用丙烯处理 ,果实不能自发合成乙烯 ,但当果实经过冷藏后再用丙烯处理 ,则果实对丙烯的反应能力随冷藏时间延长而增强。为了进一步了解低温诱导的乙烯反应过程。我们对乙烯受体基因进行了研究。定量PCR分析结果表明 ,与拟南芥ETR1同源的基因的表达不受低温的调节。但冷藏后升温 ,或在升温后用丙烯处理时 ,mRNA含量降低。这些结果说明 ,低温可能是通过影响乙烯信号转导途径下游的其它因子而调节依赖乙烯的ETR1基因和ACC合成酶基因的表达 ,从而影响果实的成熟过程  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号