首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1969篇
  免费   150篇
  国内免费   1篇
  2023年   13篇
  2022年   37篇
  2021年   61篇
  2020年   35篇
  2019年   47篇
  2018年   55篇
  2017年   40篇
  2016年   56篇
  2015年   81篇
  2014年   84篇
  2013年   130篇
  2012年   116篇
  2011年   129篇
  2010年   73篇
  2009年   61篇
  2008年   77篇
  2007年   81篇
  2006年   71篇
  2005年   73篇
  2004年   77篇
  2003年   60篇
  2002年   71篇
  2001年   44篇
  2000年   37篇
  1999年   28篇
  1998年   16篇
  1994年   9篇
  1993年   11篇
  1992年   29篇
  1991年   22篇
  1990年   14篇
  1989年   17篇
  1988年   24篇
  1987年   20篇
  1986年   24篇
  1985年   21篇
  1984年   15篇
  1983年   14篇
  1982年   9篇
  1981年   12篇
  1980年   15篇
  1979年   16篇
  1978年   17篇
  1977年   17篇
  1976年   13篇
  1975年   22篇
  1974年   15篇
  1973年   17篇
  1972年   18篇
  1968年   9篇
排序方式: 共有2120条查询结果,搜索用时 31 毫秒
991.
Enzymatic features that determine transglycosylating activity have been investigated through site-directed mutagenesis studies on two family 18 chitinases, ChiA and ChiB from Serratia marcescens, with inherently little transglycosylation activity. The activity was monitored for the natural substrate (GlcNAc)(4) using mass spectrometry and HPLC. Mutation of the middle Asp in the diagnostic DxDxE motif, which interacts with the catalytic Glu during the catalytic cycle, yielded the strongly transglycosylating mutants ChiA-D313N and ChiB-D142N, respectively. Mutation of the same Asp(313/142) to Ala or the mutation of Asp(311/140) to either Asn or Ala had no or much smaller effects on transglycosylating activity. Mutation of Phe(396) in the +2 subsite of ChiA-D313N to Trp led to a severalfold increase in transglycosylation rate while replacement of aromatic residues with Ala in the aglycon (sugar acceptor-binding) subsites of ChiA-D313N and ChiB-D142N led to a clear reduction in transglycosylating activity. Taken together, these results show that the transglycosylation properties of family 18 chitinases may be manipulated by mutations that affect the configuration of the catalytic machinery and the affinity for sugar acceptors. The hypertransglycosylating mutant ChiA-D313N-F396W may find applications for synthetic purposes.  相似文献   
992.
The Gloeobacter ligand-gated ion channel (GLIC) is a bacterial homolog of vertebrate Cys-loop ligand-gated ion channels. Its pore-lining region in particular has a high sequence homology to these related proteins. Here we use electrophysiology to examine a range of compounds that block the channels of Cys-loop receptors to probe their pharmacological similarity with GLIC. The data reveal that a number of these compounds also block GLIC, although the pharmacological profile is distinct from these other proteins. The most potent compound was lindane, a GABAA receptor antagonist, with an IC50 of 0.2 μM. Docking studies indicated two potential binding sites for this ligand in the pore, at the 9′ or between the 0′ and 2′ residues. Similar experiments with picrotoxinin (IC50 = 2.6 μM) and rimantadine (IC50 = 2.6 μM) reveal interactions with 2′Thr residues in the GLIC pore. These locations are strongly supported by mutagenesis data for picrotoxinin and lindane, which are less potent in a T2′S version of GLIC. Overall, our data show that the inhibitory profile of the GLIC pore has considerable overlap with those of Cys-loop receptors, but the GLIC pore has a unique pharmacology.  相似文献   
993.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   
994.
Recovery of ectomycorrhiza after 'nitrogen saturation' of a conifer forest   总被引:1,自引:0,他引:1  
Trees reduce their carbon (C) allocation to roots and mycorrhizal fungi in response to high nitrogen (N) additions, which should reduce the N retention capacity of forests. The time needed for recovery of mycorrhizas after termination of N loading remains unknown. Here, we report the long-term impact of N loading and the recovery of ectomycorrhiza after high N loading on a Pinus sylvestris forest. We analysed the N% and abundance of the stable isotope (15) N in tree needles and soil, soil microbial fatty acid biomarkers and fungal DNA. Needles in N-loaded plots became enriched in (15) N, reflecting decreased N retention by mycorrhizal fungi and isotopic discrimination against (15) N during loss of N. Meanwhile, needles in N-limited (control) plots became depleted in (15) N, reflecting high retention of (15) N by mycorrhizal fungi. N loading was terminated after 20yr. The δ(15) N and N% of the needles decreased 6yr after N loading had been terminated, and approached values in control plots after 15yr. This decrease, and the larger contributions compared with N-loaded plots of a fungal fatty acid biomarker and ectomycorrhizal sequences, suggest recovery of ectomycorrhiza. High N loading rapidly decreased the functional role of ectomycorrhiza in the forest N cycle, but significant recovery occurred within 6-15yr after termination of N loading.  相似文献   
995.
Formation of metabolons (macromolecular enzyme complexes) facilitates the channelling of substrates in biosynthetic pathways. Metabolon formation is a dynamic process in which transient structures mediated by weak protein-protein interactions are formed. In Sorghum, the cyanogenic glucoside dhurrin is derived from l-tyrosine in a pathway involving the two cytochromes P450 (CYPs) CYP79A1 and CYP71E1, a glucosyltransferase (UGT85B1), and the redox partner NADPH-dependent cytochrome P450 reductase (CPR). Experimental evidence suggests that the enzymes of this pathway form a metabolon. Homology modeling of the three membrane bound proteins was carried out using the Sybyl software and available relevant crystal structures. Residues involved in tight positioning of the substrates and intermediates in the active sites of CYP79A1 and CYP71E1 were identified. In both CYPs, hydrophobic surface domains close to the N-terminal trans-membrane anchor and between the F′ and G helices were identified as involved in membrane anchoring. The proximal surface of both CYPs showed positively charged patches complementary to a negatively charged bulge on CPR carrying the FMN domain. A patch of surface exposed, positively charged amino acid residues positioned on the opposite face of the membrane anchor was identified in CYP71E1 and might be involved in binding UGT85B1 via a hypervariable negatively charged loop in this protein.  相似文献   
996.
997.
Secondary metabolite (SM) production by fungi is hypothesized to provide some fitness attribute for the producing organisms. However, most SM clusters are "silent" when fungi are grown in traditional laboratory settings, and it is difficult to ascertain any function or activity of these SM cluster products. Recently, the creation of a chromatin remodeling mutant in Aspergillus nidulans induced activation of several cryptic SM gene clusters. Systematic testing of nine purified metabolites from this mutant identified an emodin derivate with efficacy against both human fungal pathogens (inhibiting both spore germination and hyphal growth) and several bacteria. The ability of catalase to diminish this antimicrobial activity implicates reactive oxygen species generation, specifically, the generation of hydrogen peroxide, as the mechanism of emodin hydroxyl activity.  相似文献   
998.
The inevitable exposure of crop plants to salt stress is a major environmental problem emerged from the presence of excess NaCl radicals in the soil. Handling the problem in maize plants using a biological agent was the main interest of the present study. The non-pathogenic, halophytic, facultative aerobic bacterium Geobacillus caldoxylosilyticus IRD that was isolated from Marakopara pond in the Atoll Tikehau (French Polynesian, 2005) and found tolerant to salt stress until 3.5% NaCl (w/v). An artificial symbiosis was achieved by inoculating Geobacillus sp. into 5-day-old maize cultivars of triple hybrids (321 and 310) and singlet hybrids (10 and 162). Thereafter, maize seedlings were exposed to 350 mmol NaCl for 10 days. The data revealed that Geobacillus sp. had interacted with salinized maize and improved maize overall growth, dry weight and relative water content. Na+ accumulation was six times less and Cl accumulation was 13 times less in the tips of salinized maize seedlings upon Geobacillus sp. inoculation. Salinized maize without Geobacillus viewed decayed cortical cells of seedlings. In addition, proline content was two times higher in salinized seedlings lacking Geobacillus. Photosynthetic pigments and antioxidant enzymes were significantly regulated upon inoculation. Beyond this study, we presented a novel insight into a possible role of Geobacillus caldoxylosilyticus bacteria in controlling/protecting maize plants against high salt stress.  相似文献   
999.
Transgenic mice that overexpress human type 1 angiotensin II receptor (AT(1)R) in the heart develop cardiac hypertrophy. Previously, we have shown that in 6-mo AT(1)R mice, which exhibit significant cardiac remodeling, fractional shortening is decreased. However, it is not clear whether altered contractility is attributable to AT(1)R overexpression or is secondary to cardiac hypertrophy/remodeling. Thus the present study characterized the effects of AT(1)R overexpression on ventricular L-type Ca(2+) currents (I(CaL)), cell shortening, and Ca(2+) handling in 50-day and 6-mo-old male AT(1)R mice. Echocardiography showed there was no evidence of cardiac hypertrophy in 50-day AT(1)R mice but that fractional shortening was decreased. Cellular experiments showed that cell shortening, I(CaL), and Ca(v)1.2 mRNA expression were significantly reduced in 50-day and 6-mo-old AT(1)R mice compared with controls. In addition, Ca(2+) transients and caffeine-induced Ca(2+) transients were reduced whereas the time to 90% Ca(2+) transient decay was prolonged in both age groups of AT(1)R mice. Western blot analysis revealed that sarcoplasmic reticulum Ca(2+)-ATPase and Na(+)/Ca(2+) exchanger protein expression was significantly decreased in 50-day and 6-mo AT(1)R mice. Overall, the data show that cardiac contractility and the mechanisms that underlie excitation-contraction coupling are altered in AT(1)R mice. Furthermore, since the alterations in contractility occur before the development of cardiac hypertrophy, it is likely that these changes are attributable to the increased activity of the renin-angiotensin system brought about by AT(1)R overexpression. Thus it is possible that AT(1)R blockade may help maintain cardiac contractility in individuals with heart disease.  相似文献   
1000.
Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号